Índice

Lis	A DE TABLAS	xxi
Lis	A DE FIGURAS	xxv
Lis	A DE SÍMBOLOS	xxxi
CAI	TULO 1 INTRODUCCIÓN Y OBJETIVOS	
1.1	NTRODUCCIÓN	. 1
	.1.1 Proceso de diseño	. 1
	1.1.2 Diseño óptimo de forma y armado de láminas de hormigón	. 2
1.2	OBJETIVOS DE LA TESIS	. 3
1.3	ORGANIZACIÓN DE LA TESIS	. 4
CAI	TULO 2 ESTADO DEL ARTE EN EL ANÁLISIS Y DISEÑO ÓPTIMO DE FORM Y ARMADO DE LÁMINAS DE HORMIGÓN	IA
2.1	NTRODUCCIÓN	. 5
2.2	OPTIMIZACIÓN DE ESTRUCTURAS. RESEÑA HISTÓRICA	. 5
2.3	DISEÑO ÓPTIMO DE LÁMINAS	. 7
	2.3.1 Introducción	. 7
	2.3.2 Desde los inicios hasta mediados de los 80	. 8
	2.3.3 De mediados de los 80 a mediados de los 90	. 9

	2.3.3.1 Aparición de nuevas necesidades
	2.3.3.2 Técnicas de CAGD
	2.3.3.3 Inclusión de no linealidades
	2.3.3.4 Desarrollo de herramientas informáticas y programas de ordenador
	2.3.3.5 Búsqueda de forma
	2.3.4 Últimas tendencias
2.4	ANÁLISIS Y DISEÑO ÓPTIMO DE PLACAS Y LÁMINAS DE HORMIGÓN
	2.4.1 Introducción
	2.4.2 Etapa constructiva: breve repaso por la obra de Félix Candela
	2.4.3 Diseño de la armadura
	2.4.4 Optimización del coste
	2.4.5 Búsqueda de forma
	2.4.6 Comprobación de estabilidad
	2.4.7 Últimas tendencias
2.5	PUBLICACIONES DEL DOCTORANDO REFERENTES AL TRABAJO
	DESARROLLADO EN ESTA TESIS
31	
2.1	
3.2	PROBLEMA DE BUSQUEDA DE FORMA DE LAMINAS DE HORMIGON EMPLEANL
3.3	OPTIMIZACION CON ANSYS
	3.3.1 Métodos de optimización
	3.3.2 Procedimiento operativo
3.4	EJEMPLO
3.5	MOTIVACIÓN
~	
CAL	PITULO 4 ESTUDIO DEL DISENO OPTIMO DE ESPESOR Y GEOMETRIA DE UN
	FARABOLOIDE HIFEKBOLICO DE HORMIGON EMPLEANDO DIVERSA FUNCIONES OR IETIVO
	FUNCIONES OBJETTVO
4.1	INTRODUCCIÓN
4.2	DESCRIPCIÓN Y MODELIZACIÓN DE LA ESTRUCTURA
	4.2.1 Introducción

	4.2.3	Modelo de diseño	50
	4.2.4	Modelo CAD	50
		4.2.4.1 Parámetros geométricos	51
	4.2.5	Modelo de análisis	52
		4.2.5.1 Malla de elementos finitos	52
		4.2.5.2 Material	53
		4.2.5.3 Tipo de elemento	55
		4.2.5.4 Condiciones de contorno	55
		4.2.5.5 Acciones	56
		4.2.5.6 Hipótesis de combinación de acciones	59
4.3	ANÁI	LISIS DEL MODELO INICIAL	62
4.4	PROC	CESOS DE OPTIMIZACIÓN	65
	4.4.1	Función objetivo, variables de diseño y restricciones	65
	4.4.2	Proceso 1. Función objetivo energía de deformación (<i>ED</i>) con espesor mínimo 6 cm	66
	4.4.3	Proceso 2. Función objetivo energía de deformación (<i>ED</i>) con espesor mínimo 8 cm	70
	4.4.4	Proceso 3. Función objetivo peso (W) con espesor mínimo 6 cm	74
	4.4.5	Proceso 4. Función objetivo peso (W) con espesor mínimo 8 cm	78
	4.4.6	Proceso 5. Función objetivo mayor tensión principal $\sigma_1(\sigma_i)$ con espesor mínimo 6 cm	82
4.5	RESU	MEN DE RESULTADOS	86

CAPÍTULO 5 ANÁLISIS NO LINEAL Y DE ESTABILIDAD DE LÁMINAS DE HORMIGÓN

5.1	INTR	ODUCC	IÓN	89
5.2	ANÁI	LISIS NO	D LINEAL	90
	5.2.1	Introdu	cción	90
	5.2.2	No line	alidad geométrica. Matriz de rigidez tangente	90
	5.2.3	No line	alidad del material	94
		5.2.3.1	Método incremental	94
		5.2.3.2	Métodos iterativos	95
	5.2.4	Leyes d	le comportamiento del hormigón	96
		5.2.4.1	Comportamiento rígido-plástico ideal (diagrama rectangular)	97
		5.2.4.2	Comportamiento elástico-plástico ideal (diagrama bilineal)	97
		5.2.4.3	Comportamiento elástico-plástico no lineal (diagrama parábola-rectángulo)	98
		5.2.4.4	Comportamiento elástico-plástico no lineal (diagrama de Sargin)	98

5.3	ANÁI	LISIS DE	E ESTABILIDAD			
	5.3.1	Introdu	cción			
	5.3.2	El fenó	meno de la inestabilidad en láminas de hormigón			
	5.3.3	Método	del comité ACI 344			
	5.3.4	Método	basado en las recomendaciones de la IASS			
		5.3.4.1	Introducción			
		5.3.4.2	Fórmula básica			
		5.3.4.3	Coeficiente de sensibilidad a las imperfecciones			
		5.3.4.4	Coeficiente de fluencia			
		5.3.4.5	Coeficiente de armado y fisuración			
		5.3.4.6	Coeficiente de no linealidad del material			
		5.3.4.7	Coeficiente de seguridad			
5.4	ANÁI	ANÁLISIS NO LINEAL Y DE ESTABILIDAD EN ANSYS				
	5.4.1	Introdu	cción			
	5.4.2	Análisis	s no lineal en ANSYS			
		5.4.2.1	Generalidades			
		5.4.2.2	No linealidad geométrica y del material			
		5.4.2.3	Planteamiento del análisis no lineal de la lámina en hypar			
	5.4.3	4.3 Análisis de estabilidad en ANSYS				
		5.4.3.1	Generalidades			
		5.4.3.2	Análisis de estabilidad inicial			
		5.4.3.3	Análisis de estabilidad no lineal			
5.5	EJEMPLOS					
	5.5.1	Estudio	de no linealidad de los diseños del hypar			
		5.5.1.1	Tipos de análisis empleados			
		5.5.1.2	Diseño inicial			
		5.5.1.3	Diseños óptimos			
		5.5.1.4	Resumen de resultados			
	5.5.2	Estudio	de estabilidad de los diseños del hypar			
		5.5.2.1	Análisis de estabilidad inicial			
		5.5.2.2	Análisis de estabilidad no lineal			
		5.5.2.3	Método basado en las recomendaciones de la IASS			
		5.5.2.4	Resumen de resultados			
~	,	-				

CAPÍTULO 6 PLANTEAMIENTO Y RESOLUCIÓN DEL PROBLEMA DE DISEÑO ÓPTIMO DEL ARMADO DE ELEMENTOS DE HORMIGÓN TIPO LÁMINA

6.1	I INTRODUCCIÓN					
6.2	COM	PORTAN	MIENTO DE LOS MATERIALES			
6.3	FORMULACIÓN DEL PROBLEMA DE DISEÑO ÓPTIMO					
	6.3.1	Elemen	tos sometidos al estado membrana			
		6.3.1.1	Introducción			
		6.3.1.2	Armaduras A _{sx} y A _{sy} necesarias			
		6.3.1.3	Sólo armadura A _{sx} necesaria			
		6.3.1.4	Sólo armadura A _{sy} necesaria			
		6.3.1.5	Armadura innecesaria			
	6.3.2	Elemen	tos sometidos al estado de flexión y membrana			
		6.3.2.1	Introducción			
		6.3.2.2	Armadura necesaria en ambas capas (caso BOTH)			
		6.3.2.3	Armadura necesaria sólo en la capa inferior (caso BOTTOM)			
		6.3.2.4	Armadura necesaria sólo en la capa superior (caso TOP)			
		6.3.2.5	Armadura innecesaria (caso FULLCOMP)			
		6.3.2.6	Discusión sobre las necesidades de armadura en cada elemento			
6.4	RESOLUCIÓN DEL PROBLEMA DE DISEÑO ÓPTIMO					
	6.4.1	Introdu	cción			
	6.4.2	Método	s analíticos			
		6.4.2.1	Resolución directa			
		6.4.2.2	Resolución por etapas			
	6.4.3	Método	s semianalíticos			
		6.4.3.1	Problema general con ocho variables de diseño			
		6.4.3.2	Problema simplificado con dos variables de diseño			
		6.4.3.3	Resolución por etapas			
	6.4.4	Método	numérico			
		6.4.4.1	Desarrollo del método			
		6.4.4.2	Caso particular de armadura innecesaria			
		6.4.4.3	Resolución mediante técnicas de optimización			
		6.4.4.4	Cuestiones relacionadas con el carácter numérico del método			
6.5	APLI	APLICACIONES EN ELEMENTOS ESTRUCTURALES PLANOS				
	6.5.1	Introdu	cción			
	6.5.2	Elemen	tos sometidos a compresión simple			
		6.5.2.1	Placa cuadrada			
		6.5.2.2	Viga de gran canto			
	6.5.3	Elemen	tos sometidos a flexión simple, flexión compuesta o compresión compuesta			

xx	DISEÑO ÓPTIN	MO DE FORMA Y ARMADO DE LÁMINAS DE HORMIGÓN	
	6.5.3.1	Placa rectangular simplemente apoyada	173
	6.5.3.2	Placa rectangular con un borde libre y tres empotrados	189
CAL	pítulo 7	Conclusiones	
7.1	INTRODUCC	IÓN	199
7.2	TRABAJOS R	EALIZADOS	199
7.3	CONCLUSIO	NES	200
7.4	TRABAJOS F	UTUROS	202
REI	FERENCIAS BI	BLIOGRÁFICAS	203
RE	FERENCIAS BI	BLIOGRÁFICAS DEL DOCTORANDO RELACIONADAS CON ESTA	
TES	<i>IS</i>		223

Lista de tablas

Tabla 4.1	Propiedades del material HA-30 (unidades en MPa)	55
Tabla 4.2	Ángulo de la bisectriz de un lóbulo con la horizontal ($K = 0,14$; $\omega = 90^{\circ}$)	58
Tabla 4.3	Coeficientes eólicos de presión c_p	58
Tabla 4.4	Parámetros del modelo inicial	62
Tabla 4.5	Altura y radio del modelo inicial	63
Tabla 4.6	Localización y valor de las tensiones principales máximas (modelo inicial)	65
Tabla 4.7	Función objetivo <i>ED</i> con e_{min} = 6 cm en los diseños inicial y final	66
Tabla 4.8	Variables de diseño (F.Obj. <i>ED</i> con $e_{min} = 6$ cm)	66
Tabla 4.9	Cumplimiento de las restricciones (F.Obj. ED con $e_{min} = 6$ cm)	67
Tabla 4.10	Localización y valor de las tensiones principales máximas (F.Obj. ED con	
	$e_{min} = 6 \text{ cm}$)	69
Tabla 4.11	Función objetivo <i>ED</i> con $e_{min} = 8$ cm en los diseños inicial y final	70
Tabla 4.12	Variables de diseño (F.Obj. $ED \operatorname{con} e_{min} = 8 \operatorname{cm}$)	71
Tabla 4.13	Cumplimiento de las restricciones (F.Obj. $ED \operatorname{con} e_{min} = 8 \operatorname{cm}$)	71
Tabla 4.14	Localización y valor de las tensiones principales máximas (F.Obj. ED con	
	$e_{min} = 8 \text{ cm}$)	74
Tabla 4.15	Función objetivo $W \operatorname{con} e_{\min} = 6 \operatorname{cm}$ en los diseños inicial y final	74
Tabla 4.16	Variables de diseño (F.Obj. $W \operatorname{con} e_{\min} = 6 \operatorname{cm}$)	75
Tabla 4.17	Cumplimiento de las restricciones (F.Obj. $W \operatorname{con} e_{min} = 6 \operatorname{cm}$)	75
Tabla 4.18	Localización y valor de las tensiones principales máximas (F.Obj. W con	
	$e_{min} = 6 \text{ cm}$)	78
Tabla 4.19	Función objetivo $W \operatorname{con} e_{\min} = 8 \operatorname{cm}$ en los diseños inicial y final	79
Tabla 4.20	Variables de diseño (F.Obj. $W \operatorname{con} e_{\min} = 8 \operatorname{cm}$)	79
Tabla 4.21	Cumplimiento de restricciones (F.Obj. $W \operatorname{con} e_{min} = 8 \operatorname{cm}$)	79
Tabla 4.22	Localización y valor de las tensiones principales máximas (F.Obj. W con	
	$e_{min} = 8 \text{ cm}$)	82
Tabla 4.23	Función objetivo $\sigma_t \operatorname{con} e_{\min} = 6 \operatorname{cm} \operatorname{en} \operatorname{los} \operatorname{diseños} \operatorname{inicial} \operatorname{y} \operatorname{final} \ldots$	82
Tabla 4.24	Variables de diseño (F.Obj. $\sigma_t \operatorname{con} e_{min} = 6 \operatorname{cm}$)	83
Tabla 4.25	Cumplimiento de restricciones (F.Obj. $\sigma_t \operatorname{con} e_{\min} = 6 \operatorname{cm}$)	83

Tabla 4.26	Localización y valor de las tensiones principales máximas (F.Obj. σ_t con
	$e_{min} = 6 \text{ cm}$)
Tabla 4.27	Procesos de optimización. Valores finales de las variables de geometría
Tabla 4.28	Procesos de optimización. Valores finales de las funciones objetivo, espesor de la
	lámina (e_1), tensión de compresión máxima ($\sigma_{c,max}$) y desplazamiento vertical
	máximo ($u_{z,max}$)
Tabla 5.1	Valores mínimos del coeficiente de seguridad (Dulácska y Kollár, 1995)
Tabla 5.2	Diseño inicial. Análisis lineal vs. análisis NLG. Tensiones máximas,
	desplazamiento máximo y energía de deformación
Tabla 5.3	Diseño inicial. Análisis lineal vs. análisis NLM. Tensiones máximas,
	desplazamiento máximo y energía de deformación
Tabla 5.4	Diseño inicial. Análisis lineal vs. análisis NLGM. Tensiones máximas,
	desplazamiento máximo y energía de deformación
Tabla 5.5	Diseño inicial. Análisis NLM vs. análisis NLGM. Tensiones máximas,
	desplazamiento máximo y energía de deformación
Tabla 5.6	Diseño inicial. Análisis NLG vs. análisis NLGM. Tensiones máximas,
	desplazamiento máximo y energía de deformación
Tabla 5.7	Diseño inicial. Resumen de resultados. Tensiones máximas, desplazamiento
	máximo y energía de deformación
Tabla 5.8	Diseño óptimo (F.Obj. <i>ED</i> con $e_{min} = 6$ cm). Tensiones máximas, desplazamiento
	máximo y energía de deformación para diversos análisis
Tabla 5.9	Diseño óptimo (F.Obj. <i>ED</i> con $e_{min} = 8$ cm). Tensiones máximas, desplazamiento
	máximo y energía de deformación para diversos análisis
Tabla 5.10	Diseño óptimo (F.Obj. $W \operatorname{con} e_{min} = 6 \operatorname{cm}$). Tensiones máximas, desplazamiento
	máximo y energía de deformación para diversos análisis
Tabla 5.11	Diseño óptimo (F.Obj. $W \operatorname{con} e_{min} = 8 \operatorname{cm}$). Tensiones máximas, desplazamiento
	máximo y energía de deformación para diversos análisis
Tabla 5.12	Diseño óptimo (F.Obj. $\sigma_t \operatorname{con} e_{min} = 6 \operatorname{cm}$). Tensiones máximas, desplazamiento
	máximo y energía de deformación para diversos análisis
Tabla 5.13	Autovalores del diseño inicial
Tabla 5.14	Autovalores del diseño óptimo (F.Obj. $ED \operatorname{con} e_{min} = 6 \operatorname{cm}$)
Tabla 5.15	Carga de pandeo lineal
Tabla 5.16	Análisis de estabilidad NLG
Tabla 5.17	Análisis de estabilidad NLGM
Tabla 5.18	Coeficiente de sensibilidad a imperfecciones α_1 . Parámetros de determinación
Tabla 5.19	Coeficiente de no linealidad del material α_4
Tabla 5.20	Carga de pandeo según el método basado en las recomendaciones de la IASS
Tabla 5.21	Carga de pandeo. Resumen de resultados
Tabla 6.1	Placa cuadrada. Armadura A _{sx} estricta en cada elemento del modelo
Tabla 6.2	Placa cuadrada. Armadura A _{sy} estricta en cada elemento del modelo

Tabla 6.3	Placa rectangular simplemente apoyada. Armadura A_{sxt} estricta en cada elemento	
	del modelo ($QD = 0$ kN/m)	179
Tabla 6.4	Placa rectangular simplemente apoyada. Armadura A_{sxb} estricta en cada elemento	
	del modelo ($QD = 0$ kN/m)	179
Tabla 6.5	Placa rectangular simplemente apoyada. Armadura A_{syt} estricta en cada elemento	
	del modelo ($QD = 0$ kN/m)	180
Tabla 6.6	Placa rectangular simplemente apoyada. Armadura A_{syb} estricta en cada elemento	
	del modelo ($QD = 0$ kN/m)	180
Tabla 6.7	Placa rectangular simplemente apoyada. Armadura A_{sxb} estricta en cada elemento	
	del modelo ($QD = 150 \text{ kN/m}$)	183
Tabla 6.8	Placa rectangular simplemente apoyada. Armadura A_{syb} estricta en cada elemento	
	del modelo ($QD = 150 \text{ kN/m}$)	183
Tabla 6.9	Placa rectangular simplemente apoyada. Comparación de resultados para la	
	armadura A _{sy}	190
Tabla 6.10	Placa rectangular con un borde libre y tres empotrados. Comparación de	
	resultados para las armaduras	197

Lista de figuras

Diseño por prueba y error	
Diseño optimizado	
Iglesia de San Antonio de las Huertas, Tacuba, México (Candela, 1956)	
(a) Restaurante Los Manantiales, Xochilmilco, México (Candela, 1958).	
(b) Capilla de Lomas de Cuernavaca, Palmira, México (Candela, 1958)	
(a) Planta embotelladora Bacardí, Cuautitlán, México (Candela, 1960).	
(b) Restaurante submarino. L'Oceanogràfic, Valencia (Candela, 2000)	
Edificio de acceso. L'Oceanogràfic, Valencia (Candela, 2001). (a) Lámina en	
construcción. (b) Lámina en la actualidad	,
Modelo de optimización (Bletzinger y Ramm, 1993)	
Lámina apoyada en los bordes rectos. Resultados de los procesos de	
optimización	
Lámina apoyada en los bordes curvos. Resultados de los procesos de	
optimización	
Lámina apoyada en todos los bordes. Resultados de los procesos de optimización	
Estructura laminar. Perspectiva	
Sistemas de coordenadas utilizados en la definición del hypar	
Definición de un lóbulo. (a) Planos de intersección. (b) Planta	
Definición del plano inclinado. (a) Perspectiva. (b) Perfil	
Modelo CAD. Keypoints. (a) Perfil. (b) Planta	
Modelo CAD. (a) Líneas. (b) Áreas	
Malla de elementos finitos de un lóbulo. (a) Perfil. (b) Planta	
Zona del orificio central. Detalle de la malla de elementos finitos	
Encuentro de la lámina con el nervio principal. Detalle	
Elemento finito Shell93 (ANSYS, 2004)	
Condiciones de contorno de un sextante de la lámina	
Sección por la bisectriz de un lóbulo ($\omega = 90^{\circ}$)	
Combinación de acciones en el plano de sotavento	
Combinación de acciones en el plano de barlovento	(
	Diseño por prueba y error

Figura 4.15	Desplazamientos $u_z[m]$ del modelo inicial. Planta
Figura 4.16	Tensiones principales σ_1 [Pa] del modelo inicial. (a) Cara inferior. (b) Cara
	superior
Figura 4.17	Tensiones principales σ_3 [Pa] del modelo inicial. (a) Cara inferior. (b) Cara
	superior
Figura 4.18	Evolución de los parámetros en el proceso de optimización (F.Obj. ED con
	$e_{min} = 6 \text{ cm}$)
Figura 4.19	Geometría y desplazamientos del diseño óptimo (F.Obj. <i>ED</i> con $e_{min} = 6$ cm).
	(a) Superposición de diseños inicial-óptimo. (b) Desplazamientos u_z [m]
Figura 4.20	Tensiones principales σ_1 [Pa] del diseño óptimo (F.Obj. <i>ED</i> con $e_{min} = 6$ cm).
	(a) Cara inferior. (b) Cara superior
Figura 4.21	Tensiones principales σ_3 [Pa] del diseño óptimo (F.Obj. <i>ED</i> con $e_{min} = 6$ cm).
	(a) Cara inferior. (b) Cara superior
Figura 4.22	Evolución de los parámetros en el proceso de optimización (F.Obj. ED con
	$e_{min} = 8 \text{ cm}$)
Figura 4.23	Geometría y desplazamientos del diseño óptimo (F.Obj. <i>ED</i> con $e_{min} = 8$ cm).
	(a) Superposición de diseños inicial-óptimo. (b) Desplazamientos u_z [m]
Figura 4.24	Tensiones principales σ_1 [Pa] del diseño óptimo (F.Obj. <i>ED</i> con $e_{min} = 8$ cm).
	(a) Cara inferior. (b) Cara superior
Figura 4.25	Tensiones principales σ_3 [Pa] del diseño óptimo (F.Obj. <i>ED</i> con $e_{min} = 8$ cm).
	(a) Cara inferior. (b) Cara superior
Figura 4.26	Evolución de los parámetros en el proceso de optimización (F.Obj. W con
	$e_{min} = 6 \text{ cm}$)
Figura 4.27	Geometría y desplazamientos del diseño óptimo (F.Obj. $W \operatorname{con} e_{\min} = 6 \operatorname{cm}$).
	(a) Superposición de diseños inicial-óptimo. (b) Desplazamientos u_z [m]
Figura 4.28	Tensiones principales σ_1 [Pa] del diseño óptimo (F.Obj. $W \operatorname{con} e_{\min} = 6 \operatorname{cm}$).
	(a) Cara inferior. (b) Cara superior
Figura 4.29	Tensiones principales σ_3 [Pa] del diseño óptimo (F.Obj. $W \operatorname{con} e_{\min} = 6 \operatorname{cm}$).
	(a) Cara inferior. (b) Cara superior
Figura 4.30	Evolución de los parámetros en el proceso de optimización (F.Obj. W con
	$e_{min} = 8 \text{ cm}$)
Figura 4.31	Geometría y desplazamientos del diseño óptimo (F.Obj. $W \operatorname{con} e_{\min} = 8 \operatorname{cm}$).
	(a) Superposición de diseños inicial-óptimo. (b) Desplazamientos u_z [m]
Figura 4.32	Tensiones principales σ_1 [Pa] del diseño óptimo (F.Obj. $W \operatorname{con} e_{\min} = 8 \operatorname{cm}$).
	(a) Cara inferior. (b) Cara superior
Figura 4.33	Tensiones principales σ_3 [Pa] del diseño óptimo (F.Obj. $W \operatorname{con} e_{\min} = 8 \operatorname{cm}$).
	(a) Cara inferior. (b) Cara superior
Figura 4.34	Evolución de los parámetros en el proceso de optimización (F.Obj. σ_i con
	$e_{min} = 6 \text{ cm}$)

Figura 4.35	Geometría y desplazamientos del diseño óptimo (F.Obj. $\sigma_t \operatorname{con} e_{\min} = 6 \operatorname{cm}$).
	(a) Superposición de diseños inicial-óptimo. (b) Desplazamientos u_z [m]
Figura 4.36	Tensiones principales σ_1 [Pa] del diseño óptimo (F.Obj. $\sigma_t \operatorname{con} e_{min} = 6 \operatorname{cm}$).
	(a) Cara inferior. (b) Cara superior
Figura 4.37	Tensiones principales σ_3 [Pa] del diseño óptimo (F.Obj. $\sigma_t \operatorname{con} e_{min} = 6 \operatorname{cm}$).
	(a) Cara inferior. (b) Cara superior
Figura 5.1	Elemento triangular (tensión plana o deformación plana). (a) Coordenadas
	nodales. (b) Fuerzas nodales. (c) Tensiones en el elemento
Figura 5.2	Sistemas de coordenadas y tensiones en el planteamiento de la matriz de rigidez
	geométrica de un elemento membrana triangular. (a) Sistema de coordenadas
	global. (b) Plano del elemento y sistema de coordenadas local. (c) Tensiones en
	los bordes del elemento
Figura 5.3	Método de análisis incremental. Curva tipo carga-desplazamiento en un nodo j
Figura 5.4	Curva carga-desplazamiento para dos iteraciones consecutivas. (a) Aplicación de
	la carga de una vez y obtención de una nueva matriz de rigidez en cada iteración
	(método de Newton-Raphson). (b) Aplicación de la carga por escalones y
	obtención de una nueva matriz de rigidez sólo en la primera iteración de cada
	escalón (método de Newton-Raphson modificado)
Figura 5.5	Comportamiento rígido-plástico ideal del hormigón (diagrama rectangular)
Figura 5.6	Comportamiento elástico-plástico ideal del hormigón (diagrama bilineal)
Figura 5.7	Comportamiento elástico-plástico no lineal del hormigón (diagrama parábola
	rectángulo)
Figura 5.8	Comportamiento elástico-plástico no lineal del hormigón (diagrama de Sargin)
Figura 5.9	Trayectorias de inestabilidad en esferas
Figura 5.10	Comportamiento post-pandeo. (a) Creciente (lámina insensible a imperfecciones).
	(b) Decreciente (lámina sensible a imperfecciones)
Figura 5.11	Coeficiente de sensibilidad a las imperfecciones α_1 (Recomendaciones de la
	IASS, 1979)
Figura 5.12	Coeficiente intermedio de armado y fisuración ψ . (a) Recomendaciones de la
	IASS, 1979. (b) Propuesta de Kollár, 1993
Figura 5.13	Coeficiente de armado y fisuración α_3 (Recomendaciones de la IASS, 1979)
Figura 5.14	Esquema operativo de un análisis no lineal en ANSYS
Figura 5.15	Curva tensión-deformación discretizada del hormigón
Figura 5.16	Curvas de pandeo. (a) Análisis de estabilidad inicial o de autovalores.
	(b) Análisis no lineal
Figura 5.17	Análisis NLG del diseño inicial. Tensiones máximas [Pa]. (a) Tracciones en la
	cara inferior. (b) Compresiones en la cara superior
Figura 5.18	Análisis NLG del diseño inicial. Desplazamientos u_z [m]
Figura 5.19	Análisis NLM del diseño inicial. Tensiones máximas [Pa]. (a) Tracciones en la
	cara inferior. (b) Compresiones en la cara superior

Figura 5.20	Análisis NLM del diseño inicial. Desplazamientos u_z [m]
Figura 5.21	Diagrama tensión-deformación no lineal vs. lineal adoptando el módulo de
	elasticidad secante
Figura 5.22	Análisis NLGM del diseño inicial. Tensiones máximas [Pa]. (a) Tracciones en la
	cara inferior. (b) Compresiones en la cara superior
Figura 5.23	Análisis NLGM del diseño inicial. Desplazamientos u _z [m]
Figura 5.24	Comparación de algunos parámetros de la optimización según el diseño y el tipo
	de análisis. (a) Máxima tensión de tracción. (b) Máxima tensión de compresión.
	(c) Máximo desplazamiento vertical. (d) Energía de deformación
Figura 5.25	Cuatro primeros modos de pandeo del diseño inicial
Figura 5.26	Carga de pandeo de los diseños inicial y óptimos. Comparación entre valores
	obtenidos por distintos métodos
Figura 6.1	Estado de membrana en un elemento lámina de hormigón armado. (a) Fuerzas
	exteriores. (b) Contribución de la armadura. (c) Contribución del hormigón
Figura 6.2	Solicitaciones exteriores sobre un elemento lámina sometido al estado de
	membrana y flexión. (a) Fuerzas. (b) Momentos
Figura 6.3	Dirección de la fisuración en un elemento lámina de hormigón. (a) Capa superior.
	(b) Capa inferior
Figura 6.4	Modelo de un elemento lámina de hormigón armado. (a) Brazos mecánicos de las
	armaduras. (b) Fuerzas internas (esfuerzos) en el hormigón y en las armaduras
Figura 6.5	Placa cuadrada. Modelo de elementos finitos y cargas
Figura 6.6	Placa cuadrada. Esfuerzos de membrana [kN/m]. (a) N_x . (b) N_y . (c) N_{xy}
Figura 6.7	Placa cuadrada. Densidades de armado $[mm^2/m]$. (a) A_{sx} . (b) A_{sy}
Figura 6.8	Viga de gran canto. Esquema de geometría y cargas
Figura 6.9	Viga de gran canto. Modelo de elementos finitos. (a) Malla de 210 elementos.
	(b) Malla de 3360 elementos
Figura 6.10	Viga de gran canto. Densidades de armado $[mm^2/m]$. (a) A_{sx} . (b) A_{sy}
Figura 6.11	Placa rectangular simplemente apoyada. Modelo de elementos finitos y cargas
Figura 6.12	Placa rectangular simplemente apoyada. Armadura según el tamaño de malla
	$(QD = 0 \text{ kN/m})$. (a) A_{syt} y A_{syb} en sección de apoyo. (b) $A_{syt}+A_{syb}$ en sección de
	apoyo. (c) A_{syb} en sección centro de vano. (d) Detalle de A_{syb} en sección centro de
	vano
Figura 6.13	Placa rectangular simplemente apoyada. Armadura según el tamaño de malla
	$(QD = 150 \text{ kN/m})$. (a) A_{syt} y A_{syb} en sección de apoyo. (b) $A_{syt}+A_{syb}$ en sección de
	apoyo. (c) A_{syb} en sección centro de vano. (d) Detalle de A_{syb} en sección centro de
	vano
Figura 6.14	Placa rectangular simplemente apoyada. Esfuerzos de flexión [mkN/m]
	$(QD = 0 \text{ kN/m}).$ (a) M_x . (b) M_y . (c) M_{xy}
Figura 6.15	Placa rectangular simplemente apoyada. Mapas de densidad de armado [mm ² /m]
	$(QD = 0 \text{ kN/m}).$ (a) A_{sxt} . (b) A_{syt} . (c) A_{sxb} . (d) A_{syb}

Figura 6.16	Placa rectangular simplemente apoyada. Superficies de densidad de armado
	$(QD = 0 \text{ kN/m}).$ (a) A_{sxt} . (b) A_{syt} . (c) A_{sxb} . (d) A_{syb}
Figura 6.17	Placa rectangular simplemente apoyada. Esfuerzos de membrana [kN/m] y de
	flexión [mkN/m] (QD = 150 kN/m). (a) N_x . (b) N_y . (c) M_x . (d) M_y . (e) M_{xy}
Figura 6.18	Placa rectangular simplemente apoyada. Mapas de densidades de armado
	$[mm^2/m]$ (<i>QD</i> = 150 kN/m). (a) <i>A_{sxb}</i> . (b) <i>A_{syb}</i>
Figura 6.19	Placa rectangular simplemente apoyada. Superficies de densidad de armado
	$(QD = 150 \text{ kN/m}).$ (a) A_{sxt} . (b) A_{syt} . (c) A_{sxb} . (d) A_{syb}
igura 6.20	Placa rectangular simplemente apoyada. Resultados de armado ($QD = 0$ kN/m).
	(a) A_{syt} y A_{syb} en la sección de apoyo. (b) $A_{syt}+A_{syb}$ en la sección de apoyo. (c) A_{syb}
	en la sección centro de vano
Figura 6.21	Placa rectangular simplemente apoyada. Resultados de armado ($QD = 50$ kN/m).
	(a) A_{syt} y A_{syb} en la sección de apoyo. (b) $A_{syt}+A_{syb}$ en la sección de apoyo. (c) A_{syb}
	en la sección centro de vano
Figura 6.22	Placa rectangular simplemente apoyada. Resultados de armado ($QD = 100 \text{ kN/m}$).
	(a) A_{syt} y A_{syb} en la sección de apoyo. (b) $A_{syt}+A_{syb}$ en la sección de apoyo. (c) A_{syb}
	en la sección centro de vano
Figura 6.23	Placa rectangular simplemente apoyada. Resultados de armado ($QD = 150$ kN/m).
	(a) A_{syt} y A_{syb} en la sección de apoyo. (b) $A_{syt}+A_{syb}$ en la sección de apoyo. (c) A_{syb}
	en la sección centro de vano
Figura 6.24	Placa rectangular simplemente apoyada. Resultados de armado ($QD = 200 \text{ kN/m}$)
	(a) A_{syt} y A_{syb} en la sección de apoyo. (b) $A_{syt}+A_{syb}$ en la sección de apoyo. (c) A_{syb}
	en la sección centro de vano
Figura 6.25	Placa rectangular simplemente apoyada. Resultados de armado ($QD = 250$ kN/m)
	(a) A_{syt} y A_{syb} en la sección de apoyo. (b) $A_{syt}+A_{syb}$ en la sección de apoyo. (c) A_{syb}
	en la sección centro de vano
Figura 6.26	Placa rectangular con un borde libre y tres empotrados. Modelo de elementos
	finitos y carga
Figura 6.27	Placa rectangular con un borde libre y tres empotrados. Esfuerzos de flexión
	[mkN/m]. (a) M_{x} . (b) M_{y} . (c) M_{xy}
Figura 6.28	Placa rectangular con un borde libre y tres empotrados. Mapas de densidades de
	armado [mm ² /m]. (a) A_{sxb} . (b) A_{syb} . (c) A_{sxt} . (d) A_{syt}
Figura 6.29	Placa rectangular con un borde libre y tres empotrados. Superficies de densidad
	de armado. (a) A_{sxb} . (b) A_{syb} . (c) A_{sxt} . (d) A_{syt}
Figura 6.30	Placa rectangular con un borde libre y tres empotrados. Definición de las
	secciones en estudio
Figura 6.31	Placa rectangular con un borde libre y tres empotrados. Resultados de armado.
	Sección 1. (a) A_{sx} . (b) A_{sy} . (c) $A_{sxt}+A_{sxb}$. (d) $A_{syt}+A_{syb}$
Figura 6.32	Placa rectangular con un borde libre y tres empotrados. Resultados de armado.
	Sección 2. (a) A_{sx} (b) A_{sy} . (c) $A_{sxt}+A_{sxb}$. (d) $A_{syt}+A_{syb}$

Figura 6.33	Placa rectangular con un borde libre y tres empotrados. Resultados de armado.	
	Sección 3. (a) A_{sx} . (b) A_{sy} . (c) $A_{sxt} + A_{sxb}$. (d) $A_{syt} + A_{syb}$	196
Figura 6.34	Placa rectangular con un borde libre y tres empotrados. Resultados de armado.	
	Sección 4. (a) A_{sx} . (b) A_{sy} . (c) $A_{sxt}+A_{sxb}$. (d) $A_{syt}+A_{syb}$	197