ULTIMAS NOTICIAS SOBRE

hormigón pretensado

BOLETIN NUM. 16 DE LA ASOCIACION ESPAÑOLA DEL HORMIGON PRETENSADO DEL INSTITUTO TECNICO DE LA CONSTRUCCION Y DEL CEMENTO

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

Patronato "Juan de la Cierva" de Investigación Técnica

ULTIMAS NOTICIAS

Técnicas en Estructuras

Hormigén Pretensado

Boletín de circulación limitada

Nº 16

3er Trimostre 1953

-- INSTITUTO TECNICO DE LA CONSTRUCCION Y DEL CELENTO --

INDICE

Nota: El Instituto, una de cuyas finalidades es divulgar los trabajos de investigación sobre la construcción y edificación, no se hace responsable del contonido de ningún artículo y el hecho de que patrocine su difusión no implica, en modo alguno, conformidad con la tesis expuesta.

457-0-11 HORMAS ALESANAS PARA EL PROYECTO DE ELEMENTOS DE HOR-MIGON PRETENSADO

(Vorgespannte Stahlbetonbauteile. Richtlinien für die Bemessung. DIN 4227)

Publicado por "VILHEIM ERNST UND SOMN" - Borlín 1950

Autor: Hubert Rüsch

(Continuación)

12. COEFTCIENTE DE SEGURIDAD A LA ROTURA

12.1 Causas y formas de la rotura

12.11 En los elementos sometidos a flexión y con armadura infracrítica, la rotura se produce al rebasarse el límite elástico — de la armadura; debido al alargamiento del acero, la zona com — primida del hormigón se reduce, la fibra neutra, se eleva, y co mo consecuencia, llega un momento en que se alcanza la resistem cia del hormigón en compresión y la pieza se rompe.

12.12 En los elementos con armadura supracrítica sometidos a flexión, la rotura se produce al alcanzarse la resistencia del hormigón en la zona comprimida de la sección. En estos casos la capacidad resistente de la armadura de tracción solo se aprovecha parcialmente.

12.13 Signos indicadores de rotura inminente.

En los elementos constructivos con armadura infra -

crítica la rotura se anuncia por un agrietamiento excesivo del hormigón.

En las piezas con armadura supracrítica, la rotura, en cambio, puede producirse sin anuncio previo, bruscamente, — por aplazamiento de la zona comprimida.

También puede producirse la rotura frágil en el ca so de piezas con muy débil cuantía de armadura y amplias zonas de hormigón en tracción. En estos casos, cuando el hormigón de la zona extendida se agrieta, la totalidad de los esfuerzos de tracción deben ser absorbidos, por la armadura y al no ser ésta capaz de resistirlos, se produce la rotura brusca de la pieza.

12.2 Influencia del pretensado sobre la carga máxima de rotura.

12.21 Elementos con armadura infracritica.

La capacidad resistente de los elementos debilmente armados aumenta muy poco con el pretensado, ya que al alcan zarse el límite elástico del acero, disminuye muy rápidamente el efecto del alargamiento inicial de los alambres mediante el cual se originó el pretensado.

12.22 Elementos constructivos con armadura supracritica.

Los elementos constructivos con armadura supracrítica son aquellos, en los que de no existir esfuerzo de preten sado se produciría la rotura, por compresión del hormigón, antes de que el acero de la armadura alcanzara su límite elástico. La capacidad resistente de estas piezas resulta aumentada por el protensado en una magnitud proporcional a la diferencia entre la tensión de la armadura pretesa, bajo la carga de rotura, y la que tendría en tal estado de no existir la precemprosión.

12.23 Piezas con débiles cuantías do armadura.

En las piezas con armadura infracrítica, la probalidad de rotura brusca por fallo de la armadura, (ver 12,13) resulta aumentada por el pretensado, puesto que antes de producir se la fisuración en la zona extendida del hormigón, los alambres tesos se encuentran ya sometidos a una tensión superior a la que tendrian de no existir el pretensado y por ello es más poqueño el aumento de tensión que son capaces de absorber al producirse el agrietamiento del hormigón.

12.3 Márgenes de seguridad.

12.31 Coeficiente de seguridad.

Se estima que el coeficiente de seguridad a la rotura de una estructura es suficiente si se demuestra que es capaz de seportar una carga igual a 1,75 veces la prevista en el cálculo.

So entiende por carga prevista la que resulta al su mar los efectos del esfuerzo de pretensado, la retracción de fraguado, y la fluencia, más 1,75 veces la suma de los efectos de la carga permanente, sobrecarga móvil y variaciones de tempo ratura, en su combinación más desfavorable.

12.32 Aumento del coeficiente de seguridad para el hormigón.

Al estudiar la seguridad a la rotura de una estructura, debe tenerse en cuenta que, debido a la mayor dispersión de las propiedades resistentes del hormigón, se hace necesario tomar un mayor coeficiente de seguridad para este material que para el acero. Ambos coeficientes de seguridad deberán estar, aproximadamente en la relación 3 : 2. Por consiguiente, en los cálculos para la determinación del coeficiente de seguridad total se tomará, como resistencia en compresión del hormigón, -los 2/3 de su valor real.

12.4 Normas para la doterminación de la carga de rotura de un - elemento.

12.41 Principios generales.

Para determinar la carga de rotura se partirá de la hipótesis de que las secciones planas permanecen planas al producirse la deformación de la pieza. Si se conocen los diagramas de tensión-deformación de los materiales utilizados, es posible, bajo dicha hipótesis, determinar los diferentes estados de tensión y deformación del elemento hasta alcanzar la rotura.

12.42 Influencia de la deformación del acero.

El diagrama tensión deformación de los aceros utilizados para el pretensado, se deducirá mediante los ensayos establecidos en 3.31. Como simplificación podrá admitirse que la tensión no excede del límite elástico (comportamiento plástico ideal). Esta hipótesis es válida también para los aceros de las armaduras no tesas, para los que no se exigen ensayos previos y cuyas características resistentes se tomarán de acuerdo con lo indicado en la parte A 8 5, Tabla I. (DIN 1045).

12.43 Influencia de la deformación del hormigón.

El diagrama tensión—deformación del hormigón puede suponerse, de acuerdo con la fig. 1 como parabólico, y con vértice en el punto determinado por una tensión igual a $2/3 \text{ W}_b$ (ver 12.32) y una deformación $E_b = 1.8 \text{ °/oo}$. Se designa por W_b la resistencia en compresión del hormigón, en probeta cúbica, a los 28 días.

12.5 Cálculo del coeficiente de seguridad a la rotura.
12.51 Datos necesarios.

En general, el coeficiente de seguridad a la rotura, deberá comprobarse gráfica o analíticamente, de acuerdo con las normas dadas en 12.4.

Si se trata de elementos estructurales prefabricados se admite en determinados casos especiales, la comprobación de la seguridad a la rotura mediante ensayos, siempre que las condiciones en que estos se realicen sean idénticas a aquellas a las que luego estará sometida la estructura en la práctica y con tal que los ensayos se realicen en un laboratorio oficial. En tales casos las probetas, de acuerdo con 12.32 se deben fabricar con un hormigón, cuya calidad sea tal, que su resistencia cúbica alcance solo los 2/3 de los valores correspondientes al hormigón de calidad normal con el que luego se fabricarán las piezas.

12.52 Determinación analítica.

La determinación de la carga de rotura mediante los - diagramas tensión-deformación es, en general, posible solo gráficamento. Sin embargo, en el caso de secciones cuya zona comprimida sea rectangular o casi rectangular, se puede simplificar el problema efectuando una comprobación numérica. Para ello hay que admitir las siguientes hipótesis.

12.53 Area de la zona comprimida, en una sección sometida a flexión.

 $D_b = 2/3.0,85 \text{ W}_b.F_{bd} \text{ casi igual a 0,55 W}_b.F_{bd}$ (3) en donde:

Fbd = sección de hormigón por encima del eje neutro;
 2/3 = coeficiente de reducción de acuerdo con 12.32.
 Wb = resistencia del hormigón en compresión a los 28 días.

0,85 = valor medio del coeficiente que permite deducir el area de la zona comprimida en función de Wh.

12.54 Esfuerzo de tracción absorbido por las armaduras sometidas a tracción.

$$Z_{e} = F_{ev} \cdot \mathcal{F}_{ev} + F_{ev} \cdot \mathcal{D}_{e}$$
 (4)

en donde F_{ev} es la sección de la armadura pretesa; F_e la de la armadura sin tesar, caso de existir; y σ_{ev} y σ_e las tensiones a que dichas armaduras se encuentran sometidas, respectivamente, bajo la carga máxima de rotura de la pieza.

12.55 Brazo mecánico.

Para la doterminación del brazo mecánico se admite — que el punto de aplicación de la resultante de los esfuerzos de compresión coincide con el c.d.g del área Fbd de la sección de — hormigón que queda por encima del eje neutro. Y que el de la resultante de los esfuerzos de tracción coincide con el baricentro de la armadura siempre que las barras que la constituyen se en — cuentren situadas aproximadamente en el mismo plano horizontal.

12.6 Coeficiente de seguridad a la rotura en elementos sometidos a flexión y pretensados por adherencia o por adherencia adicional.

12.61 Influencia del alargamiento inicial del acero.

Al calcular el efecto del pretensado, es necesario toner en cuenta el alargamiento inicial experimentado por los alembres tesos, durante su puesta en carga y las deformaciones originadas por los restantes esfuerzos. Si las armaduras se tesan antes de endurecido el hormigón, el alargamiento inicial vione dado directamente por el experimentado por los alambres en los moldes o bancos de montajo. En el caso de que el pretensado se realice después del endurecimiento del hormigón actuando los gatos contra el propio material de la pieza, cuyo acorta miento elástico, por consiguiente, es necesario tener en cuenta alargamiento inicial a introducir en los cálculos se de ol duce determinando el que hubieran sufrido los alambres durante el pretensado, de haberse dispuesto las cosas en la forma necesaria para conseguir que el hormigón de la pieza quedase libre de tensiones.

12.62 Tensiones del acero en los elementos constructivos con armadura supracrítica.

En elementos constructivos con armadura supracrítica la tensión en los alambres tesos se mantiene, aún para el estado de rotura, por debajo de su límite elástico, y puede cal cularse mediante las hipótesis formuladas en 12.4 y 12.52 a - 12.55.

12.63 Tensión del acero en los elementos constructivos con armadura infracrítica.

Si la tensión de los alambres pretesos, determinada de acuerdo con lo indicado en 12.62, sobrepasa el límite elástico del acero, puede admitirse que bajo la carga máxima de rotu-

ra, la tensión, tanto en la armadura pretesa, como en la corrien te, alcanza el límite elástico, simultáneamente (ver 3.311).

12.7 Determinación de la seguridad a la rotura en los elementos estructurales con pretensado sin adherencia, sometidos a floxión.

En el pretencado sin adherencia, los alambres tesos pueden alargarso libremente en toda su longitud.

En consecuencia, aún para pequeños incrementos de - carga, se originan deformaciones considerables, por lo cual la - tensión en dichos alambres aumenta muy poco al alcanzarse la carga máxima de rotura de la pieza y en la mayoría de los casos no - llega al límite elástico.

La magnitud de las tensiones a que se encuentra some tida la armadura, bajo la acción de la carga máxima de rotura de la pieza, deberá determinarse a partir de las deformaciones de los alambres.

Si no se conocen dichas deformaciones puede calcular se la tensión Cer de la armadura tesa, mediante la siguiente ex presión:

$$\sigma_{\text{ev}} = \sigma_{\text{vo}} * \Psi \sigma_{\text{s}} \tag{5}$$

En esta fórmula vq representa la tensión producida en el acero de los alambres tesos, por las cargas de trabajo, in cluyendo los efectos de la retracción y fluencia y σ_s el límite elástico de la armadura no tesa. El coeficiente ψ se tomará — igual a 0,4 en el caso de emplearse cables para producir el protensado, y a 0,6 cuando se utilicen, con dicho fin, barras.

La tensión o no deberá exceder del límite elástico del acero de la armadura tesa (ver 3.311). El esfuerzo de tracción total correspondiente a la retura será entences:

$$Z_{o} = F_{ev} \cdot \sigma_{ev} + F_{o} \sigma_{s} \tag{6}$$

12.8 Elementos pretensados sometidos a tracción y compresión.

12.81 En el caso de elementos protensados que trabajan en compresión, en lugar de calcular la carga de rotura se comprebará que la tensión en el hormigón, bajo las cargas de trabajo, dedu cida mediante la fórmula (7) que a continuación se incluye, no excede de los valores dados en la sección 16 Tabla VIII, línea

4. $T_{b} = 0.75 \frac{F_{ov} T_{ev}}{F_{b} + n F_{o}} + \frac{P}{F_{b} + n (F_{e} + F_{ev})}$ (7)

En dicha fórmula For representa la sección de la - armadura tesa y Tov la tensión producida en la misma por el esfuerzo de pretensado (ver 9,21). Pes el esfuerzo exterior (axil), que actúa sobre el elemento bajo la carga de trabajo. En la fórmula (7) se tiene en cuenta el hecho de que para lastensiones de compresión producidas por el pretensado, el coeficiente de seguridad requerido es menor que el exigido para - las tensiones originadas por etras cargas. Los cálculos basados en las cargas de trabajo son más sencillos que los relativos a la carga máxima de rotura y proporcionan resultados suficiente mente aproximados.

12.82 En el caso de elementos pretensados sometidos a tracción la carga máxima de rotura se determina sin tener en cuenta la

colaboración del hormigón y se supone igual a la carga bajo la -cual la armadura alcanza su límite elástico (ver 3.311). Puede -admitirse que en las armaduras con y sin tensión previa el límite elástico se alcanza simultáneamente.

12.9 Secciones completadas con posterioridad a su fabricación.

En el caso de secciones que, después de su fabrica — ción se completen añadiéndoles hormigón, deberá determinarse la carga máxima de rotura tanto para la sección primitiva como para la final. Al calcular esta última se supendrá que la pieza se — comporta, bajo cualquier tipo de carga, como si hubiera sido fabricada de una sola vez, pero para ello será preciso que la junta entre las dos zonas hormigonadas en distintas épocas, esté — convenientemente armada para que sea capaz de resistir los esfuerzos que sobre ella actúan. Esta prescripción es de la mayor im — portancia especialmente por lo que respecta a los esfuerzos cortantes.

13 Armaduras transversales y tensiones de adherencia.

13.1 Determinación de las tensiones principales.

La magnitud y dirección de las tensiones principales oblícuas, se determinarán a partir de las tensiones cortantes y normales. El cálculo se realizará para el estado I (secciones no fisuradas).

Si en una sección sólo aparecen tensiones normales -de compresión, deberá determinarse la tensión principal oblícua
de tracción, en las distintas fibras de la sección, con el fin -de poder deducir su valor máximo (ver fig. 2. Ejemplo de pre -tensado total). En el caso de secciones en las cuales se presen-

ten tensiones normales de tracción y compresión, el valor de la tensión principal de tracción que debe tomarse para dimensionar la pieza será el correspondiente a la fibra neutra, a no ser que se produzca un valor superior, por encima de ella, en la zona de las tensiones normales de compresión. (Ver fig. 3, ejem plo de pretensado parcial).

13.2 Comprobación de las tensiones de adherencia.

No será necesario comprobar las tensiones de adheren cia en los casos en que las armaduras estén repartidas uniforme mente por toda la sección y su diámetro no sea superior a 20 -- mm.

Por el contrario, deberán comprobarse siempre di - chas tensiones, tanto en el caso de pretensado por adherencia, como con adherencia adicional, si la armadura está constituída por varios alambres agrupados formando cables o haces (ver 6.2).

13.3 Comprobación de tensiones bajo sobrecarga admisible.

La tensión principal oblícua de tracción producida bajo la acción de la sobrecarga admisible (ver 9) y determinada de acuerdo con 13.1 no deberá exceder de los valores indicados en 16, Tabla VIII líneas 27-29, si se trata de protensado total y líneas 30-32 si es protensado pareial. La tensión de adherencia calculada, no deberá sobrepasar los valores dados en 16 Tabla VIII - renglón 41.

13.4 Comprobación de tensiones bajo sobrecarga máxima.

Cuando so trata de determinar la capacidad máxima - resistente de una pieza, deborán calcularse las tensiones correspondientes al estado de carga definido en 12.31.

Si en estas condiciones la tensión principal oblícua de tracción resulta mayor que los valores indicados en 16, Tabla VIII renglenes 33-35, deberán aumentarse las dimensiones de la -sección o incrementarse el esfuerzo de pretensado hasta conseguir que, dichos valores, no sean rebasados.

Para absorber las tensiones principales oblícuas de tracción habrá que disponer estribos, levantar barras o hacer ambas cosas simultáneamente. Cuando en una zona de una pieza los valores de las tensiones principales máximas de tracción rebasen los indicados en 16, Tabla VIII, renglones 36-38, deberán disponerse las armaduras transversales necesarias para absorber la tentidad de dichas tensiones, culaéndose especialmente de que tablos armaduras estén correctamente distribuídas. Hay que tener en cuenta que las tensiones principales de tracción actúan en general, con una inclinación de unos 45º, sobre el eje de la pieza.

Las tensiones admisibles para el acceso en estos casos serán las indicadas en 16, Tabla VIII, ronglones 49-51.

valores dados en 16, Tabla VIII, rengión 42. Deberá comprebarse que bajo las solicitaciones de agotamiento, la suma de las tensiones absorbidas por adherencia más las resistidas por el anela jo, en caso de haberlo, es igual al esfuerzo de tracción en la barra.

- 14. Pandeo producido por los esfuerzos do protensado.
- 14.1 Métodos de protonsado por medio de armaduras.

Cuando el pretensado se introduce por medio de armaduras tesas, el esfuerzo total de compresión originado en el hor migón, es igual al esfuerzo total de tracción en la armadura, es

decir que la suma de ambos esfuerzos es nula. En consecuencia, los esfuerzos de pretensado podrán producir pandeo solamente — cuando el elemento comprimido puede pandear independientemente, y esto será posible únicamente si los cables van por fuera de — la pieza y aislados de ella, en una gran longitud.

Por consiguiente en el caso de pretensado por adherencia no es necesario realizar la comprobación al pandeo, pero, si el pretensado es sin adherencia, habrá que realizar la com probación tomando una longitud de pandeo igual a la distancia entre los puntos en los cuales existe un enlace efectivo entre la armadura y el elemento en compresión (hormigón).

Para los esfuerzos de compresión distintos de los - originados por el pretensado, la comprobación se efectuará en - la forma corriente.

14.2 Pretensado contra estribos independientes.

En el caso de pretensado contra apoyos rígidos, por ejemplo roca (ver 1.12), el esfuerzo de pretensado constituye – un esfuerzo exterior y debe ser considerado como tal, desde el punto de vista del pandeo.

14.3 Comprobación numérica.

Las comprobaciones del pandeo se realizarán de acuer do con lo establecido en la DIN 1045 parte A \$ 27, Nº 2 y en la DIN 4255 parte E \$ 14.2. En el caso de puentes se harán según lo indicado en la DIN 1075.

15. Anclaje de las armaduras de pretensado.

15.1 Generalidades.

Las armaduras de pretensado deberán anclarse firme-

mente en el hormigón, mediante disposiciones adecuadas, que generalmente consisten en placas especiales de anclaje.

La unión de los cables de los anclajes y la de las distintas partes de estos entre sí se dimensionarán de acuerdo con las normas para estructuras metálicas (ver DIN 1050).

15.2 Anclaje medianto ganchos

El anclaje mediante ganchos sólo será permitido cuando la tensión en el acero bajo las cargas previstas (estado de carga 9.33) no exceda de los valores indicados en 16, Tabla VIII renglo nes 46 - 48.

15.3 Anclaje por medio de lazos

El anclaje por lazos sólo será permitido cuando las tensiones locales originadas por los mismos sobre el hornigón no sean superioros a las que se indican en 16, Tabla VIII, renglones
39 y 40. Si los lazos se doblan en frio, la tensión axil en los ca
bles no deberá revasar los valores dados en 16, Tabla VIII, renglo
nes 43 - 45.

Si se tiene en cuenta el incremento de tensión producido por la flexión originada por la curvatura de la armadura dichos valores pueden aumentarse en un 15%. Los esfuerzos transversales de tracción creados alrededor de los lazos, deberán ser absorbidos mediante las adecuadas armaduras transversales.

En el caso de pretensado sin adherencia, deberá tenerse en cuenta que el rozamiento a que da lugar la curvatura de la armadura, produce en el hormigón tensiones de tracción por lo que se hace preciso adoptar las oportunas medidas para absorber dichas tensiones.

15.4 Anclaje por adherencia y rozamiento

Cuando el esfuerzo de pretensado deba ser transmitido al hormigón sin dispositivos especiales de anclaje por adheren - cia o rozamiento únicamente, empleando por ejemplo armaduras de forma determinada o constituídas por numerosos alambres del-

gades (cuerdas de piano), se requerirá una autorización especial, ya que la efectividad de tal sistema depende estrechamente de una serie de diversos factores a considerar (forma y recubrimien to de la armadura, magnitud del pretensado, calidad del hormigón, y su resistencia en el instante de la transmisión de esfuerzos, retracción, fluencia, etc.).

Debido a la fluencia, la longitud necesaria para transferir gradualmente al hormigén el esfuerzo de pretensado (longitud de transferencia) así como la requerida para el anclaje por adherencia de los alambres (longitud de anclaje), alcan zan su máximo valor solamente con el transcurso del tiempo y en
ciertos casos pueden llegar a cubrir una parte considerable de la luz.

Para poder autorizar el ompleo de este método de anclaje, deberán realizarse ensayos previos con el fin de determinar las longitudes necesarias de transferencia y anclaje por adherencia, una vez transcurrido el periodo de fluencia y en las condiciones más desfavorables. Deberá también especificarse el recubrimiento y la resistencia mínima del hermigón en la fecha en que haya de realizarse la transferencia del esfuerzo de pre tensado.

Al calcular el estado de tensiones baje las cargas — de trabajo se tendrá en cuenta que el hormigón no adquiere su — pretensado total efectivo hasta llegar al final de la longitud — de transferencia y que de un modo análogo la tensión en el acero únicamente alcanza su valor total, en el extremo de la longitud de anclaje.

Si los esfuerzos cortantes son elevados, puede resul

tar nocesario prolongar la pieza más allá do los apoyos o colocar armaduras transversales, en la zona correspondiente a la longitud de transferencia, como si se tratase de elementos de hormigón armado ordinario, de acuerdo con lo dispuesto en la parte A, sec — ción 20 (DIN 1045).

15.5 Determinación de las dimensiones de los anclajes exigidos - por las armaduras de pretensado.

Como quiera que la tensión de la armadura de pretensa do aumenta relativamente poco para cargas superiores a las de ago tamiento de la pieza, será suficiente calcular las dimensiones de los anclajes (placas, elementos de unión, etc.) para la carga que resulta de dividir el esfuerzo ejercido por la armadura bajo la solicitación de agotamiento, por el coeficiente de seguridad esta blecido en 12.31. Las dimensiones se calcularán adoptando para las tensiones los valores admisibles bajo las condiciones norma les de trabajo (ver 9).

16. Tensiones admisibles.

Tabla VIII

NaturaTeza de las tensiones	Zonas en las cuales se producen las tensiones o tipos de solicitación	Símbolo de la tensión		admisibles calidades d B 450		Renglón de referencia
1	2	3	4	5	6	
A -Tensiones de Compresión	1. En la zona de compresiones bajo solicitaciones admisibles. 1.1 Secciones rectangulares en régimen de flexión simple 1.2 id. id. flexión esviada 1.3 Secciones en T, teniendo en cuan ta las tensiones en las alas -	បីb រើb	11 0 1 20	130 140	15 0 160	1 2

Tabla VIII (Continuación)

Naturaleza de las tensiones	Zonas en las cuales se producen las tensiones o tipos de solicitación	Símbolo de la tensión	<u>para las 3</u> B 300	admisibles calidades B 450	en Kg/cm ² de hormigón B 600	Renglón de referencia
1		3	4	5	0	7
	(si no se consideran las tensio nes en las alas son válidas las cifras de los renglones 1 y 2). 1.4 Compresión axil en soportes y -	ŏ′ _b	100	1 20	140	3 ,
	elementos comprimidos	Op	80	10 0	120	4
	2. En la zona de tracciones bajo - las solicitaciones admisibles;		į.			
A - Tensiones	2.1 Secciones rectangulares y hue - cas en régimen de flexión simple	ŒЬ	150	175	200	5
de	2.2 id. id. flexión esviada	σ_{b}	160	1 85	210	6
Compresión	2.3 Secciones en T teniendo en cuen ta la tensión en las alas (si - no se consideran las tensiones en las alas son válidos los da- tos de los renglones 5 y 6)	o _b	135	160	1 85	- 7
	2.4 Compresión axil	Q P	110	135	160	8
	3. Apoyos o estribos y hormigón ba- jo placas de anclaje.		110			
	3.1 Tensión básica	(3	90	1 1 0	130	9
	3.2 Valor máximo admisible	07	1 50	225	300	10
B - Tensiones de	1.1 En la zona comprimida, antes de					
tracción en el	aplicar la totalidad de las car gas permanentes	o' _{bz}	30	38	45	11
hormigón	1.2 En la zona comprimida, con pos- terioridad a la aplicación de - la totalidad de las cargas per- manentes y en la zona extendida					\$ *

Tabla VIII (Continuáción)

Naturaleza de las tensiones	Zenas en las cuales se producen las tensiones o tipos de solicitación	Símbolo de la tensión		admisibles calidades B 450	en Kg/cm ² de hormigón B 600	Renglón de referencia
1	2	3	4	5	6	7
	1.21 En general	Sbz	0	.00	o	12
	1.221 Tracción axil	€ bz	8	10	12	13
	1.2221 Cuando la zona de tracciones queda en la parte superior - de la viga	್ _{bz}	1 5	20	25	14
B - Tensiones de tracción	queda en la parte inferior - de la viga	O bz	20	25	30	15
en el hormigón	nuesta 1.2231 Cuando la zona de tracciones ocupa la parte superior de - la viga	σ _{bz}	20	25	30	16
	1.2232 Cuando la zona de tracciones ocupa la parte inferior de - la viga	⁽⁵ bz	25	30	35	17
	En el caso de pretensado parcial y bajo las solicitaciones admisibles 2.1 En la zona comprimida, antes de aplicar la totalidad de las car					
	gas permanentes	\mathcal{I}_{bz}	40	50	60	18

Tabla VIII (Continuación)

			Tonnianac	admisibles	n Kalam2	
Naturaleza	Zonas en las cuales se producen las	Símbolo		calidades de		Renglón
de las	tensiones o tipos de solicitación	de la	В	В	В	de
tensiones	Constantes of Copies and Constantes	tensión	300	450	600	referencia
1	222	3	4	5	66	77
			7		100000000000000000000000000000000000000	
	2.21 En general			/		75
	2.211 Tracción axil	₫ z	12	15	18	19
*	2.212 Tensiones en la fibra en régi			723	72	
	men de flexión simple	∜ bz	30	38	45	20
	2.213 Tensiones en la fibra en régi					
	men de flexión esviada	^{₹7} bz	35	45	50	21
	2.22 Para las hipótesis formuladas					
	en 10.1					
B - Ten sione s	2.221 Tracción axil	z	15	20	25	22
de	2.222 Tensiones en el borde en régi					
	men de flexión simple .					
tracción	2,2221 Cuando la zona de tracciones					
en el	ocupa la parte superior de					
hormigón	la viga	♥ _{bz}	35	42	50	23
	2.2222 Cuando la zona de tracciones					
	ocupa la parte inferior de -					
	la viga	€ _{bz}	40	50	60	24
	2.223 Tensiones en la fibra en régi					
	men de flexión esviada					
	2.2231 Cuando la zona de tracciones					
	ocupa la parte superior de -	1				or
	la viga	⊕ bz	40	50	60	25 .
	2.2232 Cuando la zona de tracciones					
	ocupa la parte inferior de -	1	50	60	70	26
	la viga	S bz	50	60	70	20
	1. Tensiones cortantes o tensiones					
C - Tensiones	principales de tracción bajo las					
cortantes en el	solicitaciones admisibles.	0				
hormigón	1.1 En el caso de pretensado total:					
	t	1	1		7	1

Tabla VIII (Continuación)

Naturaleza de las tensiones	Zonas en las cuales se producen las tensiones o tipos de solicitación	Símbolo de la tensión 3		admisibles e calidades d B 450		Renglón de referencia
1		3	4		0	7
	1.11 Esfuerzo cortante producido - únicamento por flexión	⁽⁷ 1	8	9	10	27
	1.12 Esfuerzo cortante producido - únicamente por torsión	51	7	8	9	28
	1.13 Esfuerzo cortante producido - por flexión y torsión	01	10	11	1 2	29
	1.2 En el caso de pretensado parcial:					
	1.21 Esfuerzo cortante producido - únicamente por flexión	O ₁	12	15	18	30
C - Tensimes	1.22 Esfuerzo cortante producido - únicamente por torsión	σ ₁	12	15	18	31
cortantes	1.23 Esfuerzo cortante producido - por flexión y torsión	σ ₁	14	1 8	22	32
en el hormigón	 Z. Tensiones cortantes o tensiones principales de tracción bajo las solicitaciones de agotamiento. 					
	2.1 Valores máximos		, = 1			
	2.11 Esfuerzo cortante producido - únicamente por flexión	σ_1	. 34	38	42	33
	2.12 Esfuerzo cortante producido - únicamente por tersión	σ1	34	38	42	34
	2.13 Esfuerzo cortante producido - por flexión y torsión	Ty	45	49	53	35
	2.2 Valores admisibles sin necesi - dad do armadura, para esfuerzo - cortante:					
	2.21 Esfuerzo cortante producido únicamente por flexión	51	14	16	18	36

Tabla VIII (Continuación)

Naturaleza de las tensiones	Zonas en las cuales se producen las tensiones o tipos de solicitación	Símbolo do la tensión		admisibles of calidades de B 450		Renglón de referencia
1		3	4	5	6	7
C - Tonsiones cortantes en el	2.22 Esfuerzo cortante producido - únicamente por torsión 2.23 Esfuerzo cortante producido -	σ 1	12	14	16	37
hormigón	por flexión y torsión	51	17	19	21	38
D - Tensiones	Cuando la armadura se ancla median- le lazos según 15.3 y bajo solicita ción admisible					
locales en el hormigón	A CONTRACTOR OF THE SECOND SEC	аь	120	150	180 .	39
	2. Para un recubrimiento de hormi - gón = 5 d	αp	140	180	220	40
E - Tensiones de adheren - cia en el -		₹1	8	9	10	47
hormigón	Tensión de adherencia bajo las soli citaciones de agotamiento	71	14	1 6	18	42
F -Tensiones de tracción en el acero	1.* Armaduras pretesas, bajo las - solicitaciones admisibles. 1.1 Cuando se tesan antes del endu- recimiento del hormigón (*) Las tensiones del apartado 1, se dan en función del límite de - fluencia 0 g y de la carga de rotu- ra 0 g y son las mismas para las 3 calidades del hormigón. Las tensiones del apartado 2 se dan en valor absoluto y son iguales pa- a las 3 calidades del hormigón.		:≝- 0,8	00 65 € 0,	00 (3 B	43

Tabla VIII (Continuación)

Naturaleza de las tensiones	Zonas en las cuales se producen las tensiones o tipos de solicitación	Símbolo de la tensión		admisibles calidades d B 450		Renglón de referencia
1	2	3	4	5	6	77
	1.12 Después de la transferencia de esfuerzos al hormigón	σv	± 0,75	σ _s ≤0,55	og B	44
	1.2 Cuando se tesan después de endu recido el hormigón	Űν	∞ 0,75	$T_S = 0.55$	σ _B	45
	2. Armaduras no pretesas.					
	2.1 Para absorber las tensiones de tracción, bajo las solicitacio-					,
F - Tensiones	nes previstas: En el hormigón armado tipo I	∢r _e	1400	1400	1400	46
de tracción	En el hormigón armado tipo II .	T _e	1800	1800	1800	47
en el acero	En el hormigón armado tipo III.	ιΤe	2000	2000	2000	48
	2.2 Para absorber los esfuerzos cor tantes y los de tracción que se presentan una vez fisurado el hormigón:					74
	En el hormigón armado tipo l	O e	2200	2200	2200	49
	En el hormigón armado tipo II .	Te	3400	3400	3400	50
	En el hormigón armado tipo III.	$\sigma_{\rm e}$	4000	4000	4000	51

16.1 Aclaraciones a la tabla VIII.

16.11 Tabla de tensiones.

Las tensiones admisibles para el hormigón y el ace ro son las que se indican en la tabla VIII. No está permitida la interpolación de valores intermedios.

16.12 Normas para el empleo de la tabla de tensiones.

Las tensiones indicadas en la tabla VIII solo podrán ser utilizadas cuando se demuestre, de acuerdo con la sección 4 de estas normas, que el hormigón posee la resistencia cúbica requerida y que el acero de las armaduras de pretensado reune todas las propiedades exigidas.

16.13 Las tensiones de compresión admisibles en la zona comprimida se han tomado iguales a las indicadas en la parte A de la DIN 1045, Tabla V y en la parte E de la DIN 4225, Tabla III; en la zona extendida, por el contrario, se han admitido tensiones de compresión más elevadas, ya que, en este caso, la tensión límite (es decir, la inicial) actúa, en general, solamente durante breves momentos y cualquier sobresolicitación del hormigón conduce a una reducción automática de tensiones, lo cual, si bien aumenta la probabilidad de fisuración apenas influye en la magnitud de la solicitación de agotamiento.

16.14 Las tensiones de tracción admisibles en el hormigón se han establecido basándose en las condiciones necesarias para la formación de grietas. En el caso de pretensado total se admiten ten siones de tracción en el hormigón sólo para determinados estados de carga por ejemplo, en la zona de compresiones, para las cargas, que actúan durante el breve intervalo que media entre la experiención del pretensado de los cables y la aplicación de la totalidad de las cargas permanentes, y, en el estado definitivo de la pieza para una improbable concurrencia simultánea de varios estados desfavorables de carga.

En el caso de un pretensado parcial se admiten, en - general, las tensiones de tracción en el hormigón. Sin embargo, debe cuidarse de que, bajo las solicitaciones previstas, no re -

sulte sobrepasada la resistencia a tracción del hormigón.

16.15 La tensión admisible en los cordones de las armaduras de pretensado depende, según se deduce de la tabla VIII, renglones 43-45, de la resistencia a la rotura y del límite de fluencia del acero empleado.

Las que se indican en el renglón 43 para el caso de armaduras pretesas, pueden aumentarse hasta el 65% de la carga — de rotura o el 85% del límite de fluencia, mediante una autoriza ción especial y siempre que se compruebe que las propiedades resistentes del acero utilizado son muy uniformes.

16.2 Barras roscadas.

En el caso de barras roscadas la tensión admisible — en el núcleo de la sección se tomará igual al 70% de la que se — fija para el caso de barras normales.

16.3 Tensiones admisibles en el caso de cargas concentradas.

Las tensiones admisibles en el caso de cargas concentradas (p. ejemplo las creadas por las placas de anclaje de los cables de pretensado) se determinan de acuerdo con lo establecido en la parte A \$ 29 nº 3 (DIN 1045).

Así, la tensión (% - 1) admisible en el hormigón situado en la zona F_1 sobre la cual actúan las cargas concentradas, puede calcularse medianto la fórmula:

$$3_1 = \sigma \sqrt{\frac{F}{F_1}}$$
 (8)

siendo & la tensión dada en Tabla VIII, renglón 9 y F el área - de la sección total, normal a la dirección de la carga, sobre la

que se considera distribuído el esfuerzo aplicado. Esta superficie deberá cumplir las siguientes condiciones:

El baricentro de la superficie de distribución F, de be coincidir con el del área cargada F1.

Cuando on un mismo macizo o pieza existan varias zonas cargadas, las correspondientes superficies F de distribución no deberán solaparse.

Las tensiones g_1 en las zonas cargadas F_1 no podrán exceder de los valores indicados en la Tabla VIII renglón 10.

Si la carga concentrada está originada por un esfuer zo de anclaje P actuando en el interior de una estructura, y en una sección sometida con anterioridad a una tensión o de compresión, el valor de la tensión resultante, que no deberá exceder de los indicados para o o la línea 10, se obtendrá mediante la fórmula:

$$0 + \frac{P}{F_1} \leq 1 \tag{9}$$

Si la sección cargada F_1 se zuncha, pueden aumentar-se las tensiones \mathcal{E}_1 en la misma proporción en que lo haría la capacidad resistente de una columna de sección F_1 , al ser zunchada.

Para evitar que en las superficies F de distribución se formen grietas o se produzcan desconchones, se dispondrán, en dicha zona, las armaduras adecuadas.

Nota: Por considerarlo de interés para todos los lectores, y ante las solicitudes recibidas, se publicarán, en próximos números de esta revista, los comentarios de estas Normas, redactados por el Prof. Dr. Ing. Hubert Rüsch.

26 591 - 2 - 9 PUENTE DE HORMIGON PRETENSADO SOBRE EL RIO TORDERA

Autores: E. Ugalde Urosa, Ingeniero Industrial y J. L. López Bustos Ingeniero de Caminos.

Sinopsis

En éste artículo se describen las principales características de un nuevo puente de hormigón pretensado construido recientemente en las proximidades de San Celoni, (Provincia de Barcelona) sobre el río Tordera. Se mencionan también los más im portantes detalles de los cálculos de esta estructura, constituída por una viga contínua, de tres tramos, de 15,60 m. de luz cada uno.

Puente de hormigón pretensado sobre el río Tordera

Para salvar el paso del río Tordera, en las inmediaciones de San Celoni (provincia de Barcelona), se proyectó hace varios años, un puente de tramo recto, de hormigón armado, contres luces iguales, construyéndose por entonces, las cimentaciones de pilares y estribos. En el verano del pasado año, se decidió la terminación urgente de las obras, sustituyendo el proyecto primitivo por otro de hormigón pretensado, que reunía las vontajas de mayor desagüe lineal del cauce y menor poso propio.

La ostructura ostá constituída por una viga contínua

do tres tramos do 15,60 m. de luz, formada por dos jácenas gemelas acarteladas, con relación de inercias de centro de tramo a apo yos igual a 0,1 y variación de secciones siguiendo una ley parabólica.

Para la determinación de los momentos máximos y mínimos en las distintas secciones de la jácena, se han utilizado las líneas de influencia correspondientes a una carga móvil unitaria, determinándose las posiciones más desfavorables para las secciones situadas a 0,4 y 0,75 de las luces extremas, en los apoyos intermedios, y en el centro del vano central.

Estas líneas se han determinado teniendo en cuenta — la variación de inercia de las secciones según las tablas de F. Schleicher.

La disposición dada a las armaduras puede apreciarso on la Fig. 4. Las figuras 5 y 6 reproducen dos fases de su colo cación.

Cargas permanentes

Para el peso propio se ha considerado un valor medio aproximado de 1,50 t/m.

Las cargas permanentes, pavimento, bordillo y barandilla, equivalen a 0,280 t/m.

Para determinar los momentos flectores debidos a estas cargas se ha tenido en cuenta el peso de los acartelamientos utilizando las mismas líneas de influencia.

Sobrecargas

Se considera el paso de un vehículo pesado de 30 t. repartidas en tres ejes, con una separación entre ellos de 1,50 metros y una anchura total de vehículo de 3 metros y además ocu pando el resto de la calzada, una sobrecarga uniformemente repartida de 500 Kgs/m² y en las aceras 300 Kg/m².

Puesto que la calzada tiene solo 3 metros de anchura, se supone que la carga originada por el vehículo se reparte por igual entre las dos jácenas.

Comprobación de las secciones

Sección 0,4. Altura de la jácena h = 0,69 m. ancho de la misma 0,40 m.

Sección total $S = 0,602 \text{ m}^2$.

Momento de inercia $I = 0,02233 \text{ m}^4$ Momentos resistentes $W_g = 0,090 \text{ m}^3$ $W_q = 0,0455 \text{ m}^3$

Tensiones debidas al peso propio

$$5 = \frac{28,6}{0,09} = -318 \text{ t/m}^2 \text{ (compresión)}$$

$$\frac{28,6}{1} = \frac{28,6}{0,0455} = \frac{4}{628} t/m^2 (tracción)$$

Tensiones debidas a la sobrecarga móvil

Momentos flectores deducidos de las líneas de influencia; máximo + 59'6 mt. mínimo - 18'4 mt., armadura 22 \emptyset 19,1 = 63 cm².

La sección reducida con un coeficiente de equivalen – cia = 6,2 resulta $S_r = 0,602 * 5,2 \times 0,0063 = 0,6348 \text{ m}^2$.

Momento de inercia reducido $I_r = 0.0269 \text{ m}^4$ Momentos resistentes $W_{sr} = 0.1030 \text{ m}^3$ $W_{in} = 0.0568 \text{ m}^3$

Las tensiones correspondientes al momento flector, má ximo son:

$$\sigma_{\rm s} = -\frac{59.6}{0.103} = -578 \text{ t/m}^2$$

$$\sigma_{\rm i} = +\frac{59.6}{0.0568} = +1050 \text{ t/m}^2$$

y para ol momento flector minimo

$$G_{i} = + \frac{18.4}{0.103} = + 178 \text{ t/m}^{2}$$

$$G_{i} = -\frac{18.4}{0.0568} = -322 \text{ t/m}^{2}$$

Tonsiones debidas a la tensión previa

Con una tensión provia total de 220 toneladas y una -

excentricidad de 34 cm. tendríamos las tensiones extremas:

$$5_s = -\frac{220}{0,602} + \frac{220 \times 0,34}{0,090} = +466 \text{ t/m}^2$$

$$\frac{6}{1} = \frac{220}{0,602} = \frac{220 \times 0,34}{0,0455} = -2004 \text{ t/m}^2$$

teniendo en cuenta que al establecer la tensión previa no hay adherencia:

Tensiones debidas a la fluencia y retracción del hormigón

Se ha tenido en cuenta una cifra do fluencia n = 2 - (estado de conservación al aire libre), y un coeficiente cronológico del hormigón k = 0,75 (correspondiente al momento de aplicación de la tensión previa, cuando la resistencia del hormigón ha alcanzado el 80% del valor definitivo).

El acortamiento por retracción se ha asimilado a un - descenso de temperatura de 15º.

Con estos datos se obtiene, aplicando las fórmulas - teóricas de las normas alemanas, una pérdida de tensión en las ar maduras de 860 kg/cm 2 , lo cual representa una pérdida total de -- 63 x 0,860 = 54,2 t.

Las tensiones originadas por este esfuerzo son las siguientes:

$$\sigma_{s} = + \frac{54.2}{0.602} - \frac{54.2 \times 0.34}{0.090} = -116 \text{ t/m}^{2}$$

$$O_1 = * \frac{54.2}{0.602} * \frac{54.2 \times 0.34}{0.0455} = * 495 \text{ t/m}^2$$

Tensiones debidas al hiperestatismo de la estructura

Al poner en tensión la armadura, los momentos flectores debidos a las distintas excentricidades de la misma, dan lu gar, por la contínuidad de la estructura, a la aparición de los correspondientes momentos hiperestáticos en los apoyos.

Para el cálculo de estes mementes hiperestáticos se - ha dividido la viga contínua en partes iguales, determinándose en cada una de ellas la excentricidad y el memente flector M debido a la tensión de la armadura, para la cual se ha temado el valor - de la misma después del proceso de fluencia, por cuya causa se - estima una pérdida de unos 750 kg/cm².

Estos momentos hiporestáticos, (iguales en ambos apoyos por razón de sinetria) se han calculado per el método de los ángulos de giro. Integrando la expresión $\mathbf{E}_{\varphi} = \sum_{i=1}^{M} \Delta_{\varphi_i}$, de un mode aproximado con la fórmula de Simpson, y con auxilio de los - coeficientes de giro calculados para la determinación de las lí - neas de influencia, se obtiene un valor $\varphi_i = 7200 \, \mathrm{m.\,kg}$ con signo positivo, en cada uno de los apoyes, le que dá origen en cada sec ción del tramo central, a un momento flector secundario, constante, de valor igual al calculado y en los tramos laterales decreciente, según ley lineal, hasta anularse en los extremos.

En la sección 0,40 el momento flector calculado da - origen a unas tensiones extremas:

$$\sigma_{s} = -\frac{0.40 \times 7.2}{0.090} = -32 \text{ t/m}^{2}$$

$$\sigma_{i} = -\frac{0.40 \times 7.2}{0.0455} = -63 \text{ t/m}^{2}$$

Rosumon do tonsionos

Para determinar las tensiones más desfavorables agrupamos las calculadas en el siguiente cuadro (kg/cm²)

	Carga por.	Sobro máx.	carga min.	Protensado	Fluencia y rotracción	Momento secundario
Q	- 31,8	-57,8	÷17,8	+ 46,6	- 11,6	- 3,2
ø	. 62,8	÷105,0	32, 2	- 200,4	* 49,5	÷ 6,3
j	1	2	. 3	4.	5	6

Sumando los ofectos más desfavorables tendremos:

	Máz. (tracción)	Min. (compression)		
o _s	(1+3+4+6) = + 29,4	(1+2+4+5+6) = - 57,8		
ਾਂ ਹੈਂ	(1+2+4+5+6) = + 23,2	(1+3+4+6) = - 163,5		

La tonsión do comprosión $G_i = -163,5 \text{ kg/cm}^2$ resulta excesiva pero teniendo en cuenta que cuando actúe la sobrecarga -

sobre la estructura ya habrá tenido lugar parte del proceso de -fluencia, considerando este reducido a su cuarta parte tendríamos:

$$J_1 = 62,8 - 32,2 - 200,4 + \frac{1}{4} 49,5 + 6,3 = 151,1 \text{ kg/cm}^2$$

es decir, próxima a la máxima admisible por las Normas.

Analogamente, en otras secciones tendremos:

Sección 1.0 (apoyos) Altura de la jácena h = 1,42 m. ancho de la misma 0,40 m. armadura 22 \emptyset 19,1.

	Carga	Sobre	THE COUNTY OF THE PARTY OF THE	Pretensado	Fluencia y	Momento	1.	,
	permanente	máxima	mínima	,, 0.0.000	retracción	secundario	máx.	mín.
Os.	+ 21,1	+ 27,8	- 8,5	- 52,8	+ 7,8	- 2,5	+1,6	- 42,5
(5 _c	- 38,2	- 52,6	+ 15,5	+ 34.0	- 4,7	+ 4,8	+16.1	- 60,9

Sección 1,5 (vano central) Altura de la jácena h = 0,67 m. ancho de la misma 0,40 m. armadura 18 \emptyset 19,1.

(5 ₅	+ 3,7	- 45,5	+33,8	- 6,2	+ 0,90	- 8,9	+ 22,3 - 60,6
O:	- 7,3	+ 85,5	- 64,0	- 76,5	+ 11,3	+ 17,6	+30,6 - 130,2

Todas estas tensiones resultan inferiores a las máximas admisibles según las normas alemanas (DIN 4227) que según la tabla VIII, para un hormigón de 300 kg/cm² de resistencia mínima a la compresión medida en probeta cúbica de 20 cm. de arista, son las siguientes:

Hormigón a compresión
$$\sigma_{\text{max}} = -150 \text{ kg/cm}^2$$

Hormigón a tracción $\sigma_{\text{max}} = +30 \text{ kg/cm}^2$

Comprobación a rotura

Con hormigón de R = 300 kg/cm² y acero de G_s =4950 kgs/cm² de límite de elasticidad para una deformación permanente del 0,2%.

Profundidad de la fibra neutra:

$$y_0 = \frac{(\sqrt{3})^2}{0,85 \times \frac{2}{3}} = \frac{4950 \cdot \omega}{170 \cdot b} = \frac{29}{b} = \frac{\omega}{b}$$

siendo ω , la sección de la armadura y b el ancho de la cabeza de compresión de la viga.

Brazo de palanca: z = h - 0,40 % - recubrimientoMomento de rotura: $M_{p} = \omega \sigma_{s} Z = 4950 \omega z$

Sección 0,4: Momento máximo (positivo):

$$M_m = 28,6 + 59,6 + 2,88 = 91$$
 mtons.

$$z = 29 \times 63/230 = 7,9 \text{ cm.}$$

 $z = 69 - 0,4 \times 7,9 - 15 = 51 \text{ cm.}$

Coeficiente de seguridad: 160/91 = 1,76 > 1,75

Sección 1,0: Momento máximo (negativo):

$$M_{\rm m} = 59,9 - 82,5 = -142 \, \rm m.tons.$$

$$x = 29 \times 63/40 = 45,5 \text{ cm.}$$

 $z = 142 - 18 - 15 = 109 \text{ cm.}$ $M_r = 0,063x4,95x1,09 = 340 \text{ mt.}$

Coeficiente de seguridad: 340/142 = 2,40 >1,75

Sección 1,50: Momento máximo (negativo):

$$M_{m} = -2,7-27,2 = -30$$
 mtons.

$$y = 29 \times 28,6/40 = 21 \text{ cm.}$$

 $z = 67 - 8,4 - 7 = 52 \text{ cm.}$ $TI_{1} = 0,029x4,95x0,52 = 75 \text{ mtons.}$

Coeficiente de seguridad: 75/30 = 2,50 > 1,75

Momento máximo (positivo):

$$M_m = -2,7 + 36,5 + 7,2 = 41$$
 mtons.

$$z = 29 \times 23/230 = 2,9 \text{ cm.}$$

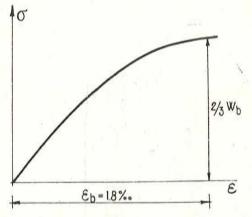
 $z = 67 - 1,2 - 7 = 59 \text{ cm.}$ $R_r = 0,023x4,950x0,59 = 67 \text{ mtons.}$

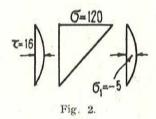
Coeficiente do seguridad: 67/41 = 1,64 < 1,75

En esta zona se refuerza la sección con armadura sin tesar compuesta por $2 \not = 20 \ (6, 3 \ \text{cm}^2)$ de $\mathcal{F}_5 = 2400 \ \text{kg/cm}^2$ el momento de rotura se eleva entonces a 73 mtons. y el coeficiente de seguridad resulta 73/41 = 1,78 > 1,75.

Comprobación de los esfuerzos cortantes

Se han determinado las máximos esfuerzos cortantes - debidos a las cargas permanentes, sobrecargas en su posición más desfavorable y componente vertical del esfuerzo de pretensado de bido a la curvatura de las barras. La resultante de estos esfuerzos cortantes compuesta con la componente normal del pretensado producen tensiones principales que en ningún caso han sobrepasa- do las máximas admisibles.


Este estudio se ha hecho en las sécciones de los apoyos y secciones 0,6 de la luz en los tramos extremos, determinándose en todos los casos las líneas de influencia correspondientes.


La armadura transversal del tablero se ha calculado - según la teoría de las placas utilizadas en la obra Berechnungs - tafeln del Dr. Ingeniero H. Rüsch.

Las obras comenzaron a primeros de septiembre con objeto de aprovechar la época de estiaje y se llevaron a ritmo acclerado para dejar completamente terminado el puente el 15 del mes siguiente, es decir, en seis semanas de trabajo.

La figura 7, roproduce el puento ya terminado.

El sistema de construcción empleado ha sido el Dywidag, empleándose barras de acero de 19 m/m de diámetro, procedimiento — que ya fué descrito en esta revista.

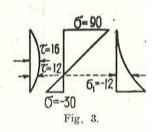
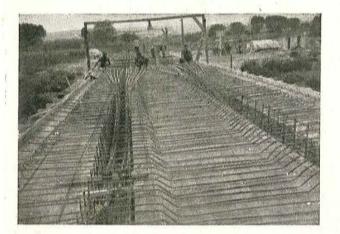



Fig. 1.

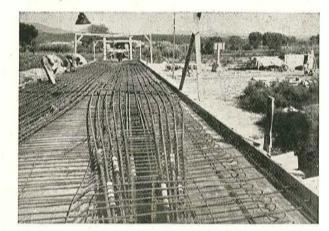


Fig. 5.

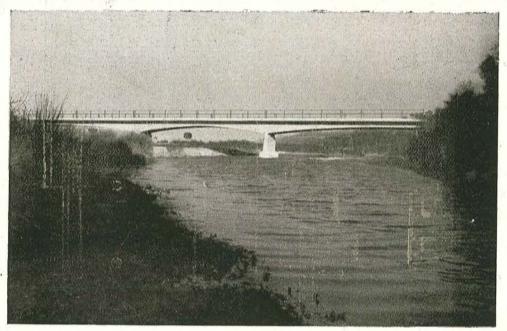
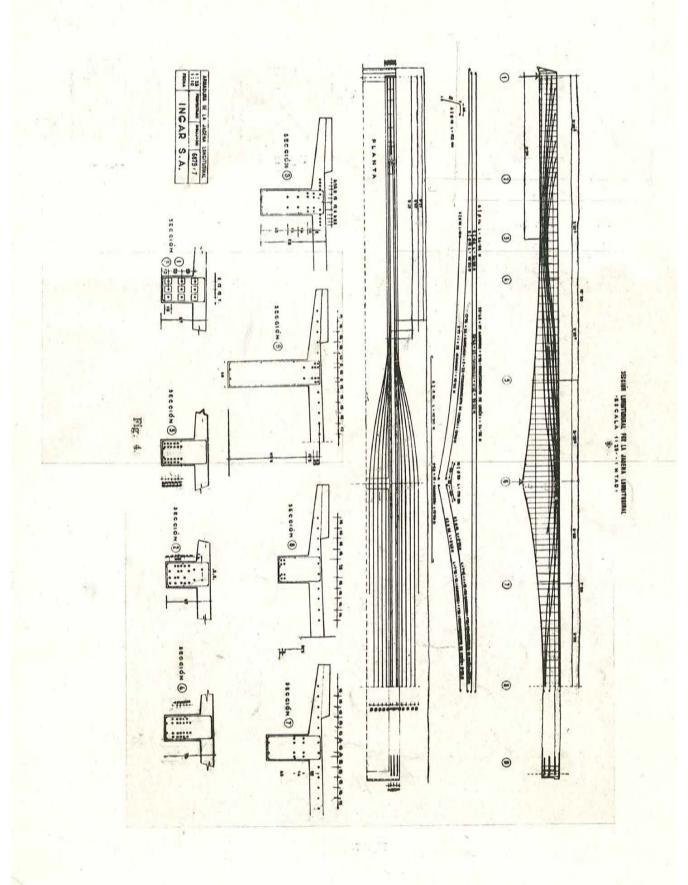
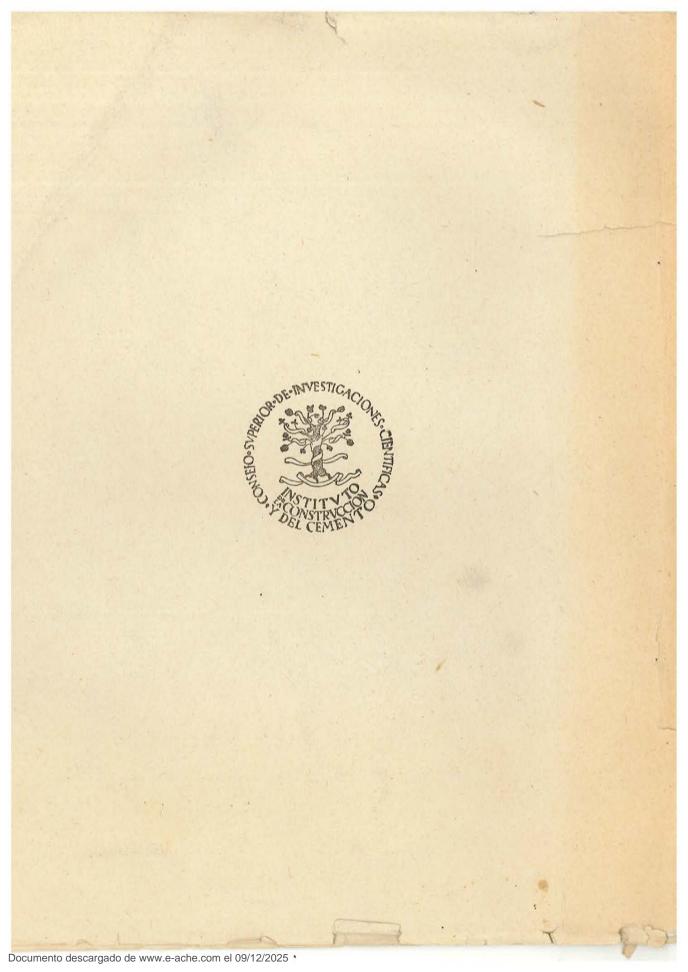




Fig. 7.

