
ULTIMAS NOTICIAS SOBRE

hormigón pretensado

BOLETIN NUM. 18 DE LA ASOCIACION ESPAÑOLA DEL HORMIGON PRETENSADO DEL INSTITUTO TECNICO DE LA CONSTRUCCION Y DEL CEMENTO

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS Patronato "Juan de la Cierva" de Investigación Técnica

ULTIMAS NOTICIAS

Técnicas en Estructuras

Hormigón Pretensado

Boletín de circulación limitada

Nº 18

Enero-Febrero 1954

- INSTITUTO TECNICO DE LA CONSTRUCCION Y DEL CEMENTO -

NOTA DE LA REDACCION

Por estimarlo de interés, se inicia en este número la publicación de los tres informes genera les presentados por los Ponentes A. W. Hill, G. Magnel e I. Guyon de las tres sesiones del I Congreso de la Federación Internacional del Hormigón Pretensa do, celebrado en Londres del 6 al 9 de Octubre del pesado año 1953.

INDICE

457-8-8 Influencia de las temperaturas anormales sobre las construcciones de hormigón pretensado.
A: Resistencia al fuego del hormigón pretensado. - B: Efectos de las bajas temperaturas sobre las vigas de hormigón armado y de hormigón

pretensado. - Por A. W. Hill

Nota: El Instituto, una de cuyas finalidades es divulgar los trabajos de investigación sobre la
construcción y edificación, no se hace responsable del contenido de ningún artículo, y el he
cho de que patrocine su difusión no implica, en
modo alguno, conformidad con la tesis expuesta.

Instituto Técnico de la Construcción y del Cemento

INFLUENCIA DE LAS TEMPERATURAS ANORMALES SOBRE LAS CONSTRUCIONES

DE HORMIGON PRETENSADO

Resumen general por A. W. Hill

-Sinopsis-

En este primer informe, el autor da cuenta de los diversos ensayos y estudios realizados hesta la fecha con el fin de lle gar a conocer al comportamiento de las estructuras de hormigón pretensado, tanto bajo la acción del fuego, como cuando se encuentran sometidas a muy bajas temperaturas.

Manifiesta que es del mayor interés continuar los trabajos en este sentido, para poder establecer unas conclusiones definitivas y que, por lo que hasta ahora se sabe, parece ser que los forjados de hormigón pretensado resisten satisfactoriamente la acción del fuego, cuando ésta es de corta duración. En caso necesario, puede aumentarse la resistencia al fuego de este tipo de piezas incrementando el recubrimiento de las armaduras o protegiendo los elementos con una capa de yeso de vermiculita.

Finalmente, expone que, según se deduce de las experien cias realizadas, la resistencia, tanto del hormigón armado, como del pretensado, aumenta cuando el elemento, una vez terminado el proceso de endurecimiento y curado, se somete a bajas temperatu - ras.

A - RESISTENCIA AL FUEGO DEL HORMIGON PRETENSADO

1 - Introducción

No se ha recibido ninguna memoria, sobre este tema, de los países del continente, pero el Director de la Fire Research Station en Elstree (Inglaterra), ha presentado una memoria detallada del trabajo que se ha efectuado en dicho laboratorio sobre piezas de hormigón pretensado. A esta memoria hay que añadir los informes que han sido publicados sobre los ensayos que se han efectuado en Elstress por los fabricantes de forjados especiales de este país. Por consiguiente, someto a discusión una memoria de dichos ensayos. Nos referimos igualmente a otros resultados pu blicados sobre ensayos de piezas sometidas al fuego, efectuados en otros paises, pero estos no están incluidos, en general en nuestras normas tiempo-temperatura. Agradezco vivamente la colaboración prestada, durante la preparación de esta memoria, por el Director de Investigaciones sobre el fuego y por los fabricantes de productos, aunque este trabajo no reproduce integramente sus opiniones.

2 - Generalidades

cuando hablamos de la resistencia al fuego de los materiales o de un tipo de construcción, nos referimos en nuestro país, al tiempo durante el cual, un elemento constructivo sigue cumpliendo su función de acuerdo con las normas establecidas sobre calentamiento, en un ensayo de laboratorio. Los métodos experimentales, la velocidad de aumento de temperatura del horno, y los criterios de aceptación están especificados en las normas — BcS.476 que están resumidas en el apartado 4.

La expresión "resistencia al fuego" no es pues aplicable a los materiales que constituyen la pieza, sino unicamente a
los elementos constructivos, y define la aptitud de estos elemen
tos para resistir un calentamiento de una intensidad dada durante el curso de su vida normal, impidiendo así la extensión del fuego al edificio, durante un tiempo determinado. Así cuando hablamos de resistencia al fuego del hormigón pretensado, en generalnos referimos precisamente a la resistencia al fuego de forja
dos, soportes, etc., construidos con arreglo a esta técnica. Igualmente, puesto que la resistencia al fuego no puede ser medi
da mas que mediante ensayos normalizados, dicha resistencia no es
más que relativa y no puede traducirse automáticamente a la realidad.

tructivos que tengan una misma resistencia al fuego en los ensayos, tengan el mismo comportamiento en un incendio real. Ningún elemento que interviene en una obra puede soportar indefinidamen te las altas temperaturas que se producen en un incendio real, y por consiguiente, la resistencia al fuego tiene una duración limitada.

¿Cúal es la posición de los elementos de hormigón pretensado comparada con otras formas constructivas y en particular con piezas de hormigón armado, en lo que refiere a la resisten cia al fuego? Lo mismo que en el hormigón armado, su resistencia depende del recubrimiento de los aceros, teniendo el hormigón una débil conductibilidad. Sabemos que la resistencia mecánica de los aceros empleados en la técnica del hormigón pretensado decrece rá pidamente con el aumento de las temperaturas, más rápidamente que el acero dulce ordinario, y por consiguiente, el recubrimiento es de una mayor importancia en el caso del hormigón pretensado que en el del armado. Aunque existe duda sobre la temperatura limite del acero dulce (la mayor parte de los autores indican que a 550°C la resistencia es la mitad de su valor inicial mientras que si se refiere al límite elástico sería más razonable el valor 400°C) se deduce, de los ensayos efectuados, que para el ace ro duro empleado en hormigón pretensado, la temperatura máxima debe ser de 400°C.

Podemos deducir de estos resultados, que será necesario un mayor recubrimiento para el acero duro de las obras pretensadas, que para el de las obras de hormigón armado, pero tal
condición no supone una gran dificultad constructiva. En hormigón armado, el acero debe estar dispuesto tan cerca como sea po
sible del borde extendido para su mayor eficacia, pero en esta
posición estará afectado por el fuego.

Así las claúsulas de protección contra el fuego que es pecifican un mínimo recubrimiento, pueden ser una restricción en los proyectos. En el caso del hormigón pretensado, los aceros no están tan ceroa de la superficie en contacto con el fuego como en el armado, y además están frecuentemente repartidos en toda la sección. Si se prevé que la protección lateral, debida al hormigón vertido "in situ", es suficiente, la resistencia de una viga de hormigón pretensado, incluso teniendo en cuenta las pérdidas en los alambres extremos, será sustancial en caso de in cendio. Podrá darse una protección suplementaria, mediante revestimientos especiales de yeso, que reducen considerablemente el choque térmico, pero no parece que tal precaución sea necesa ria en todos los casos.

Conocemos la aptitud del hormigón armado para resistir los incendios, tanto por los ensayos de laboratorio realizados, como por su comportamiento en los incendios reales durante la última guerra. Si se prevé una protección suficiente para reducir el choque térmico, y permitir a la superficie del hormigón que se caliente lentamente, puede preverse una resistencia similar para el hormigón pretensado.

3 - Condiciones requeridas para la resistencia al fuego

Las principales condiciones requeridas, para que un ele mento tenga una satisfactoria resistencia al fuego, son:

- a) que no se desplome parcialmente durante el incendio
- b) que el fuego no se extienda a las regiones inmediatas. Esto quiere decir que no deben producirse agujeros ni grietas que permitan a las llamas pasar, y que el elemento debe te ner propiedades de aislamiento suficientes para evitar una trans misión excesiva de calor.

Otro punto, que será discutido posteriormente, se refiere a la posibilidad de efectuar reparaciones después de la extinción del incendio.

Estas condiciones deben ser consideradas en función de la duración probable de un incendio en el edificio en cuestión, duración que no será evidentemente ilimitada, sino que será función del contenido del edificio y de su volumen. En la Gran Bretaña los edificios se construyen de acuerdo con las condiciones impuestas por las leyes locales. La Tabla I da los detalles prescritos por las leyes-tipo del Ministerio de "Housing and Local - Governement".

Estos reglamentos especifican unas duraciones de resis tencia al fuego, para ciertos espesores, admisibles. La Tabla II da detalles aplicables al hormigón armado.

Las citadas normas, prescriben igualmente que en aquellos casos en que la forma y los detalles de las construcciones no están de acuerdo con ciertas clausulas o no entran en las tahlas que se presentan, la resistencia al fuego debe deducirse me diante un ensayo sobre una forma similar de construcción, de acuerdo con las B.S.476:1932. El hormigón pretensado, por el momento, entra en esta última categoría.

Numerosos fabricantes de elementos de hormigón pretensado para forjados, han procedido a realizar ensayos en el Fire Research Station, ensayos que se estudian en el apartado 6(a).

La resistencia al fuego de las vigas de hormigón pre - tensado ha sido el objeto de un estudio realizado por el Fire Re search Station, cuyos resultados obtenidos hasta la fecha, se dan en el apartado 6(b).

Nuestro fin es promover ensayos de obras de hormigón pretensado y determinar las investigaciones fundamentales sobre
las propiedades del hormigón y del acero trefilado a alta temperatura, de tal forma que puedan presentarse otras tablas análo gas a las precedentes.

4 - Normas "British Standard"

Este reglamento es semejante, en numerosos puntos, a - las normas americanas, alemanas y suecas, y da definiciones y métodos de medida para la resistencia al fuego de tipos de obra en magnitud real. Se indica en ella que el elemento ensayado no mi-

da menos de 10 piés de largo, para los soportes y las vigas 610x x10 piés cuadrados para forjados y muros. Los elementos se estu — dian de modo que puedan soportar las cargas y son cargados hasta una vez y media la carga nominal y sometidos a las mismas condi — ciones que los que se encuentran, en realidad, en el edificio. Las condiciones de calentamiento, a las que los elementos están sometidos en el horno experimental, vienen definidas por una curva — tiempo—temperatura dada (fig.1) y resumidas en la Tabla III.

Se observaré, a la vista de la curva, que hay un aumento muy rápido de temperatura en los primeros minutos, condición que se produce en los incendios reales. Los incendios de importancia variable pueden ser representados por ensayos de duración diferente, dado que se ha establecido una relación entre la cantidad de calor que sería liberado por la combustión completa del contenido de una sección de edificio y la duración correspondiente del ensayo.

Se han realizado observaciones, durante todo el tiempo que ha durado el ensayo, para determinar el instante en que se al canza el primer punto crítico, punto que indica que el elemento — no puede ser considerado como una barrera que impida la extensión del fuego. El resultado del ensayo se ha indicado en función del tiempo (horas y minutos) desde que comienza el calentamiento, para el que el elemento cumplo aquella de las tres condiciones que en él se aplican:

- a) Hundimiento Para todos los elementos de una obra es necesario que este elemento no se hunda.
- b) Paso de la llama En ninguno de los elementos de la obra, cuyo papel es separar los espacios y así, resistir al pasode

la llama de un espacio a otro, debe producirse fisura ni otro ori ficio a través del cual pudiera pasar el fuego.

c) Aislamiento - En ninguno de los elementos, la tempe ratura media de la cara no expuesta al fuego, debe sobrepasar los 250ºF (139ºC) a la temperatura inicial; la temperatura de la cara no expuesta no debe alcanzar, en ningún punto, los 300ºF (167ºC).

Los forjados y los muros deben satisfacer las tres con diciones anteriores mientras que las vigas y soportes, que no tie nen otra función que la de soportar cargas, se clasificandesde - el punto de vista de su resistencia al fuego, según el tiempo que transcurre desde el comienzo del ensayo hasta la rotura por de - formación muy exagerada o hundimiento.

Se conocen cinco clases de resistencia al fuegos

Clase A: hasta 6 horas

Clase B: hasta 4 horas

Clase O: hasta 2 horas

Clase D: hasta 1 hora

Clase E: hasta & hora

Se clasifica una especie en el periodo más próximo por debajo del periodo correspondiente a la comprobación de todas las condiciones de ensayo.

Para la clasificación en las clases A, B y C, el forja do debe soportar igualmente, durante un minuto por hora de ensayo al fuego, la aplicación de un chorro de agua, según las nor mas.

5 - Aparatos y métodos de ensayo

El horno utilizado en los ensayos de obras de hormigón pretensado en el Fire Research Station de Elstree, consiste esencialmente en un bastidor rectangular de ladrillo refractario competruido sobre el suelo del edificio que se ensaya, y que tiene en la parte superior una abertura de 12 x 10 piés cuadrados. Los for jados se colocan sobre los muros del horno, de modo que la cara inferior quede expuesta al calor, siendo esta, en general, una condición más severa que la aplicación del fuego a la cara superior. El horno funciona con gas, pero sin que haya llama en contacto directo con el elemento.

Los forjados sobre apoyos simples se empotran en un cer co de ladrillos refractarios; las placas empotradas se construyen en un marco ó bastidor de vigas de acero, revestidas de hormigón. La carga de los forjados se realiza con la ayuda de lingotes uni formemente repartidos sobre la superficie superior.

La alimentación de combustible, durante el ensayo fué controlada de modo que la temperatura, medida mediante pirómetros dispuestos simétricamente en el horno, estuviese de acuerdo con la curva tiempos—temperaturas dentro de los límites de toleran—cia permitidos por las B.S.476.

En los ensayos de forjados, es necesario, igualmente, colocar pirómetros en la cara superior para obtener la temperatura media, que no debe exceder de los límites definidos en las - B.S.476. Las flechas se miden en diferentes puntos de los forjados y de las vigas.

6 - Resultados de los ensayos

a) Piezas de alambres previamente tesos

Los primeros ensayos emprendidos por la Joint Fire Research Organization of the Department of Scientific and Industrial Research and the Fire Offices' Committee sobre unidades de forjado, con alambres adherentes utilizados como viguetas, han sido descritos con detalle por L. A. Ashton. (1)

La mayoría de las piezas estaban destinadas a sopor - tar cargas relativamente ligeras y, con raras excepciones, estaban hechas con hormigón empleando grava como árido. Había una - gran variedad en las disposiciones de detalle de los elementos, y solamente 2 forjados estaban sin enlucido de yeso.

Estos forjados eran de tres tipos:

- 1) Pequeñas viguetas debidamente espaciadas que sos tienen un suelo de hormigón prefabricado o de madera, y un te cho de placas, o de yeso sobre placas metálicas.
- 2) Viguetas análogas a las piezas huecas cerámicas que sostienen un suelo de hormigón y un techo de madera.
- 3) Suelos o viguetas huecas dispuestas unas junto a otras para formar superficies continuas enlucidas con yeso.

Los elementos de cada tipo presentaban una buena regularidad en su comportamiento bajo las condiciones de ensayo.

El tipo 1 no quedó prácticamente afectado hasta que no se hundió el techo. Cuando las viguetas se exponen a temperaturas, en el horno, de 700°C y 800°C, se producen importantes fisuras que conducen a una desintegración casi completa. Este ti-

po constructivo puede convenir para pequeños edificios cuando se necesite una resistencia al fuego de media hora, si se utiliza un techo con una resistencia a la penetración de la llama de, por - lo menos, 25 minutos. Los suelos del tipo 2 se beneficiaron con la protección dada a los costados de las viguetas por medio de - las piezas huecas, y a la cara inferior de las mismas por el enlucido de yeso. La adherencia del yeso sobre las piezas huecas es suficiente para que no se desprenda con anterioridad al hundimiento del forjado. No se observó ninguna fisuración en los suelos - de este tipo y es de prever que se produzca la rotura, por hundimiento antes que por transmisión de la temperatura, ya que estas construcciones son, en general de débil conductibilidad térmica.

En suelos de este tipo, sin precauciones particulares, se obtienen resistencias al fuego de 1 a 2 horas. Si se utiliza un techo de vermiculita-yeso suspendido de chapas de metal se pue de conseguir elevar esta resistencia a 4 horas.

Las placas y las losas del tipo 3 no presentaron una buena adherencia con el yeso y, por esto, el tiempo durante el cual el yeso se mantuvo adherido durante un ensayo, fué variable.
Se produjeron caidas de yeso al producirse el entumecimiento del
hormigón expuesto al fuego; cuando estas superficies expuestas son pequeñas y el entumecimiento no persiste, la estabilidad del
forjado no queda afectada, pero si se producen entumecimientos
importantes estos pueden acelerar el hundimiento o ser de una im
portancia suficiente para formar perforaciones a través de los elementos de la cara superior. Se han obtenido resistencias que
van desde 1 á 2 horas, para forjados de este tipo, sin necesidad
de observar precauciones particulares; si se emplea un suelo de
vermiculita-yeso sobre enlistonado metálico, es posible aumentar
los resistencias hasta 4 horas.

Resulta de estos ensayos, que los forjados con alambres adherentes de pequeña sección (aproximadamente 2 pulgadas o menos de espesor), hectos con hormigón de grava, tienden a entumecerse cuando están expuestos a las temperaturas que se producen en un - incendio. Cuando se utilizan techos con enlucido aislante, no hay entumecimiento, durante el largo tiempo que dura dicha protección Habitualmente, cuando la temperatura media de los alambres sobrepasa los 350°C, el hundimiento es inminente, pero la temperatura no es un indice suficiente en los elementos mixtos en los que el hormigón retarda la rotura. Se ha realizado un solo ensayo con ele mentos de hormigóndo granito; y en este caso se produjo una fisuración muy extensa y continua en todas las zonas en las que el ye so se había destruído; sin embargo son necesarios nuevos ensayos, con áridos distintos de la grava, para poder establecer conclusio nes que puedan ser tenidas en cuenta.

La flecha que se produce en los forjados calentados inferiormente, se debe principalmente a la diferencia de temperatura entre ambas caras. Con un calentamiento prolongado y un aumento de la temperatura de los alambres, la pérdida de pretensado pro
voca una flecha más importante, y se observa una importante defor
mación poco antes de la rotura. Las flechas obtenidas con un forjado del tipo 2, simplemente apoyado, son del mismo orden de magnitud, al cabo de un tiempo equivalente, al de los forjados de pio
zas cerámicas huecas y al de obras de hormigón armado, de igual espesor medio ensayados en las mismas condiciones. Los empotramien
tos de los bordes reducen las flechas.

En otro ensayo efectuado en el Fire Research Station, so bre una sección de forjado que se proyectaba para un almacen, se consiguió una resistencia al fuego de 4 horas.

Como se verá en la Tabla I, se recomienda una resisten cia de 4 horas (clase B) para los edificios de tipo almacen en los que la sobrecarga mínima es de 1 ton/m2. El forjado que se en sayó estaba constituído por vigas-cajón pretensadas "BISON" de -3,85 m. de longitud, 0,35 m. de ancho y 0,16 m. de canto, dispues tas unas junto a otras y recubiertas con una capa de hormigón de 3,2 cm. de espesor. Un techo de metal "déployé", suspendido a -3.8 cm. bajo la cara del suelo, servia de soporte para la vermiculita-yeso que se aplicó en tres capas constituyendo un espe sor de 1 pulgada. El yeso secó normalmente durante 16 semanas an tes del ensayo. El elemento de forjado que se ensayó fué cargado hasta 1.5 ton/m2 en el horno y se aplicó el fuego durante 4 ho ras. Aparte de una ligera deformación del techo, el yeso no mostro ningún deterioro. La elevación media de temperatura, sobre la cara superior al final de este ensayo, fué de 45°C, la temperatu ra máxima medida en el espacio lleno de aire era de 340°C y la temperatura media final en el horno era de 1125ºC; después de 4 horas fué retirada la probeta del horno y se aplicó el chorro de agua durante 4 minutos. Este rompió grandes superficies de la cha pa pero no penetró en el yeso.

La flecha que se produjo fué medida sobre la superficie superior durante el ensayo. La flecha en el centro después de 4 horas, era de 1,3 cm. con relación al nivel del forjado cargado antes del calentamiento. La carga fué mantenida durante 40 horas después del ensayo y su recuperación fué casi completa, quedando una flecha remanente de 1,2 mm. Cuando fué retirada la carga, la mayor parte de la flecha inicial (8 mm.), debida a la carga estática, subsistió y después de 9 días aún fué de 5 mm.

Estos resultados demuestran que, a pesar de que los for jados de hormigón pretensado del tipo ensayado, flectan rápidamen te, cuando se calientan y se hunden entre 1 y 2 horas, aún cuando estén protegidos con un enlucido de yeso aplicado directamente so bre la cara inferior.

Si se les añade un techo suspendido constituido por una pulgada de vermiculita-yeso, pueden alcanzar una resistencia al - fuego de 4 horas y sólo es necesario sustituir el techo para que todo el forjado pueda volver a utilizarse después del incendio. - Otro tipo de forjado ensayado estaba constituido por vigas con - alambres adherentes; las vigas, que eran de gran sección y se expusieron al fuego por las dos caras laterales y por la inferior, soportaban vigas secundarias y una placa de hormigón moldeado "in situ". Los detalles que se dan a continuación han sido facilita - dos por la Concrete Development Co. Ltd. por cuya cuenta se han - realizado los ensayos en el Fire Research Station.

Los detalles del forjado ensayado se han representado — en la fig. 2; consiste en una viga principal de 0,20 m. x 0,15 m. con alambres adherentes sobre la que se moldea un ala de 0,50 de ancho por 0,12 de grueso, para formar una viga en T. Las vigas se cundarias pretensadas soportan las piezas cerámicas huecas y esta construcción se completa con hormigón que fragua entre estos elementos y una chapa de 2,5 cm. La viga en este caso no se revistió de yeso pero los elementos del forjado tenían un enlucido de 1,2 cm. El elemento de forjado que se ensayó fué cargado hasta los — 950 Kg/m² (una vez y media la sobrecarga de cálculo) con la ayuda de lingotes.

Durante los primeros 12 minutos del ensayo, se cayeron dos superficies de yeso de alrededor de 2 piés cuadrados, pero el

forjado resistió los ensayos durante dos horas. Al final de este período, se proyecto un chorro de agua sobre la cara inferior du rante 2 minutos, pero esto sólo se hizo con objeto de quitar el yeso y retirar una parte del hormigón disgregado.

El aumento medio de temperatura, en la cara superior - del forjado, a las 2 horas, fué de 168ºF (93ºC).

Las flechas se midieron durante la carga, durante el en sayo al fuego, inmediatamente después del chorro de agua y a las 48 horas.

Se realizaron otras lecturas inmediatamente antes de retirar la carga (a los 12 días) y de nuevo después de retirarla.
La flecha alcanzada, después de 2 horas de calentamiento fué de
4,4 cm., en el centro de la viga principal, y de 7,9 cm. en el centro del forjado. Después del ensayo con el agua, estas flechas
aumentaron 4,7 cm. y 8,8 cm. respectivamente. Una vez, retirada
la carga, la viga principal recuperó 0,7 cm. después de 48 horas
pero el centro del forjado recuperó 2 cm.; las flechas residua les fueron 3,3 cm. y 5 cm. en los dos puntos citados anteriormen
te. Este forjado cumplió las condiciones de la B.S.476:1932 para
la clase C.

Se realizaron, después del enfriamiento, ensayos de tracción, sobre los alambres procedentes de la viga principal y
de las vigas secundarias. En la viga principal que no tenía protección de yeso, la resistencia descendió 225 kg. cerca de la cara expuesta al fuego, siendo 750 kg. la resistencia inicial an tes del ensayo y manteniéndose elevada en el interior de la sección. Las cifras registradas y las posiciones de los alambres se
indican en la fig. 3.

En lo que se refiere a las viguetas, las resistencias residuales eran aún más elevadas, como se ve en la fig. 4.

Es interesante notar que en este ensayo y en otros del mismo tipo, realizados en Elstree, no se produjo ningún hundi - miento de elementos de hormigón pretensado de sección importanto (es decir de más de 4 pulgadas en un punto cualquiera).

Es claro que los elementos que contienen un gran núme ro de alambres, repartidos en capas a diferentes alturas, tiennen más ventaja, en lo que se refiere a la retura provocada por una caída de resistencia de los alambres por elevación de la tem peratura, con relación a elementos que no tienen más que una so la capa de alambres con pequeño recubrimiento.

b) Piezas con cables

Los ensayos hasta aquí descritos, no forman un conjunto coherente pués han sido realizados a petición de entidades - oficiales o particulares con objeto de satisfacer necesidades un gentes, que no podían esperar un estudio sistemático. Se hicieron ensayos sobre vigas con cables, ya con un programa sistemático cuyo fin era la investigación de los factores más importantes que intervienen en la resistencia al fuego. Los factores - constantes eran, la composición del hormigón, la resistencia y el tipo de alambres y su tensión inicial. Las variables eran el recubrimiento, la carga, las condiciones de apoyo y la forma de la sección. Dado el equipo de que se disponía, las vigas con cables no podían ser del tamaño de las utilizadas en los edificios

Se hicteron vigas de 20 pies de luz a escalas 1, - 3 y 1 y se ensayaron con el fin de conocer la resistencia de la viga real por extrapolación de los resultados obtenidos.

La mayor parte de los ensayos efectuados en la Fire Research Station, se realizaron hasta la rotura de las vigas, pero después de la serie principal, algunas probetas fueron calenta des durante una duración mitad de la causante de la rotura, y a continuación fueron ensayadas hasta rotura después de producido el enfriamiento para estudiar los cambios posibles de sus propiedades elásticas. Los resultados de estos ensayos se resumen en la fig. 5 que se reproduce en la memoria del año 1952 del Director de la Fire Research. (2) En dicha memoria de dan 8 conclusio nes provisionales de ensayos:

- 18 "Es improbable el entumecimiento del hormigón alliceo cuan do los elementos son de espesor no inferior a los cinco centímetros en cualquier punto".
- 28 "La resistencia al fuego depende en gran parte de la velocidad de aumento de temperatura en el cable. Puede obte nerse una resistencia de dos horas con un recubrimiento de 6,5 cm. y aún duraciones mayores si el recubrimiento es suficiente para que la temperatura del cable no alcance los 4009C".
- 3º "Para una resistencia al fuego de 4 horas y mayores, es ne cesario un revestimiento aislante. Se han ensayado revestimientos ligeros que serán descritos en publicaciones ul teriores".
- 4º "Hay poca diferencia en el comportamiento entre una viga de sección rectangular y una viga en "I" con la misma resistencia y el mismo revestimiento".
- 5ª "En general, cuanto más elevada es la carga, más rápida es la rotura, pero con ciertos tipos de vigas, la rotura pue

- de producirse cuando están poco cargadas, antes que cuan do lo están totalmente".
- 68 "Las vigas pueden romperse antes cuando están empotradas que cuando están simplemente apoyadas, pero los resultados de los ensayos no permiten dar cifras a este respecto".
- 7º "La rotura, raras veces es brusca. Hay un debilitamiento progresivo de la viga que se hace muy visible antes del hundimiento. Un bombero se prevendría enseguida, pues aparecen fisuras que aumentan durante largo tiempo antes de la rotura. Un aumento visible de flecha se produce cuando el hundimiento es inminente".
- 88 "Las vigas que han sido expuestas a un fuego de menor du ración que el que provocaría la rotura, conservan una proporción elevada de su resistencia después del enfriamien to, pero generalmente con una flecha remanente y una cier ta pérdida de pretensado".

Estas conclusiones son muy generales y dan la respues ta a muchas cuestiones que han sido planteadas varias vecos. Las conclusiones referentes al revestimiento para la resistencia al fuego hasta dos horas y las indicaciones relativas al aumento — de resistencia al fuego mediante recubrimientos de protección — son del más alto interés en los estudios y proyectos. Es satisfactorio comprobar que desde el punto de vista de la seguridad y de la protección de los bomberos, el hormigón pretensado dá seguridades suficientes para advertir el peligro de hundimiento ya que, con anterioridad a la rotura, se observan importantes — aumentos de flecha, así como la aparición de visibles grietas.

Los informes sobre piezas sometidas a temperaturas que no alcanzan la intensidad máxima son del mayor interés y los resultados hasta aqui obtenidos son muy alentadores, pero aun serán necesarios mayores detalles sobre las flechas, las resistencias residuales y las pérdidas de pretensado, resultados que podrán modificar los conocimientos hasta ahora adquiridos, en particular para los edificios que necesitan una gran resistencia al fuego.

7 - Otros ensayos sobre hormigón pretensado

Fuera de Gran Bretaña se han realizado pocas investigaciones sobre la resistencia al fuego del hormigón pretensado y los ensayos que se han hecho no han estado en general conformes con el diagrama normalizado de temperatura. Hoyer (3) efectuó algunos ensayos sobre placas de hormigón pretensado, en 1928, pero estas placas eran muy pequeñas y no soportaban ninguna carga. Bilner (4) realizó algunos ensayos con un pretensado termoeléctrico sin que la temperatura pasase de 400°C. El Dr. G. Baar (5) des cribió un ensayo, en el que alcanzó los 1310°F, sobre una viga en gran escala, y que fué muy satisfactorio, pero en el que las condiciones de las normas no se cumplian.

Las conclusiones del autor sobre este ensayo son las siguientes:

- 1º "Con un recubrimiento de 5 cm. de hormigón y una buena inyección, como en el sistema Blaton-Magnel, no hay peligro para el cable hasta los 700 800ºC".
- 28 "Cuando se expone a fuertes temperaturas, el hormigón de buena calidad parece perder una gran parte de su resis tencia a la compresión y a la tracción".

- 3º "Durante el ensayo, hay que tener en cuenta las dimensiones de la viga".
- 43 "La flecha depende de la sobrecarga".
- 58 "Durante el incendio, el hormigón pretensado previene el peligro de su hundimiento mediante la aparición de gran des deformaciones que suelen ser mayores que en el hormigón armado ordinario".

8 - El hormigón pretensado después de los incendios

La definición que ha sido dada de la resistencia al fue go, da una medida del comportamiento durante un incendio, pero no da ninguna indicación sobre la capacidad resistente de un elemen to después de haber sido sometido a altas temperaturas. Esta capacidad es importante para cualquier tipo de pieza, y hasta el mo mento se le ha prestado poca atención. En los ensayos efectuados en la Fire Research Station se ha encontrado que, incluso después de un calentamiento correspondiente a la mitad del tiempo necesario para provocar la motura, una viga, después del enfriamiento, presenta una importante pérdida de pretensado y se produce una importante flecha remanente, incluso después de retiradas las sobrecargas. No obstante, la resistencia a la rotura puede mente — nerse próxima a su valor inicial.

Un medio de determinar el comportamiento del hormigón pretensado en los incendios, es el de comparar las flechas de una construcción pretensada con las que se producen en análogas condiciones en una chara similar de hormigón armado durante el enfria miento y con diferentes períodos de calentamiento.

Se han realizado ensayos en la Fire Research Statión - para comparar la recuperación y las flechas remanentes en los for

jados de hormigón armado. Para periodos cortos de calentamiento — (alrededor de $\frac{1}{4}$ del tiempo necesario en el ensayo "standard") había poca diferencia entre ambos sistemas y las flechas remanentes eran muy pequeñas. Con un periodo de calentamiento doble, se encontró que la flecha remanente del hormigón armado solo había aumentado un poco, y la del hormigón pretensado era mucho mayor y no se recuperaba hasta un poco después del enfriamiento.

Hemos visto en el apartado 6(a), que la adición de un techo suspendido de vermiculita-yeso sobre chapa metálica, aumen ta considerablemente la resistencia al fuego en cualquier construcción; si es necesaria una resistencia al fuego casi completa para que no haya daño en la estructura, dicha solución puede ser más económica que un fuerte aumento del recubrimiento.

La cuestión del precio de las reparaciones de una obra después de un incendio, debe ser considerada a la vez que el aumento inicial del precio de los muros de protección. Si el pre — cio de estos muros de protección resulta excesivo, puede ser más económico aceptar un riesgo posible en lugar del precio de una — reparación más costosa en el caso de incendio, pero el mayor aumento de resistencia que ofrecen los revestimientos ligeros en — las vigas con cables, parece indicar que el precio de estas protecciones no es excesivo. Las destrucciones parecen entonces limitarse a los revestimientos que pueden ser reemplazados aislada mente. Es esencial que se tomen disposiciones especiales para ase gurar una adherencia conveniente del yeso.

9 - Discusión de los resultados

Las dudas que han surgido sobre la capacidad del hormigón pretensado, de permitir el grado de resistencia al fuego ac-

tualmente exigido por los reglamentos, han sido debidas induda — blemente, a la ausencia de publicaciones sobre los ensayos efectuados. Este nuevo sistema constructivo que se ha desarrollado — muy rápidamente después de la guerra, ha progresado más rápida — mente que las investigaciones sobre el mismo, y en particular más que la investigación sobre sus propiedades de resistencia al fue go. Las posibilidades de tales investigaciones son muy limitadas, pero el trabajo que se está concluyendo en el Fire Research Station es de un gran valor para el desarrollo del hormigón pretensado.

El hormigón pretensado puede ser estudiado de modo que cumpla las exigencias normales de resistencia al fuego, en los - edificios, y podemos presentir el momento en que podrán reglamentarse las formas y las dimensiones admisibles, como con otros sistemas constructivos.

por el momento se dispone de los ensayos sobre la ma - yor parte de los tipos de forjado empleados en este país, y además, otros, no menos importantes sobre vigas con armadura postesa, demuestran que pueden ya redactarse algunas recomendaciones sobre obras que hayande resistir al fuego hasta 2 horas. Esto podrá hacerse cuando se reciba la confirmación de los ensayos americanos.

Falta por estudiar aún, la cuestión de las resistencias al fuego, superiores a cuatro horas, y decidir si se pueden obte ner eficaz y económicamente sin un revestimiento especial de protección. Sabemos que esto puede lograrse con protecciones especiales ligeras e incluso puede ser más e conómico adoptar secciones más débiles que cumplan las condiciones estructurales y obte

ner una resistencia al fuego suplementaria con recubrimiento de protección, en edificios tales como almacenes, depósitos, etc. Parere que puede obtenerse semejante resistencia con 2,5 cm. de yeso de vermiculita, o con un aumento de 6,5 cm. de recubrimiento, pero el primer método es sin duda más económico en lo que se refiere a la reducción de la flecha remanente, y las posibilidades de reparación en caso de incendio de intensidad inferior al máximo.

Es evidente que aun son necesarios unos conocimientos sobre este tema y que por ello son esperados con interés los trabajos que actualmente realiza el Director de la Fire Research - Station.

Se están realizando, en Elstree, unos estudios con objeto de conocer mejor la resistencia al fuego del hormigón pretensado, y unir a los resultados hasta ahora obtenidos el conocimientos de las propiedades de los materiales. Se estudian ahora las propiedades de los alambres de acero y del hormigón sometidos a alta temperatura y después del enfriamiento.

Cuando se encuentren los factores que determinan el comportamiento del hormigón pretensado durante y después de los
incendios, será posible prever el comportamiento de las vigas de
dimensiones mayores que las que permite el actual equipo de ensayo.

10 - Referencias

1 - ASHTON, L.A The fire resistance of prestessed concrete floors. Civil Engineering and Public Works Review. 1951 Vol.46 No 545. Nov. pág. 843 y No 546 Dic. pág. 940.

- 2 Report of the Fire Research Board with the Report of the Director of Fire Research for the year 1952. H.M.S.O.
- 3 Hoyer E. Stahlsaitenbeton. Träger und Platten. Berlin 1939
- 4 Billner, K.P. Carlson, R.W. Electric prestressing of rein forcing steel. Journal of the American Concrete Institute. 1943. Vol. 14 Nº 6 Junio pág. 585.
- 5 BAAR, G. Invloed van hoge temperaturen op voorgespannen beton. Precontrainte Prestressing. 1951. Vol. 1. Nº 1 Enero Junio pág. 39

B - EFECTOS DE LAS BAJAS TEMPERATURAS SOBRE LAS VIGAS DE HORMI GON ARMADO Y DE HORMIGON PRETENSADO

1 - Introducción

El profesor Magnel ha enviado algunas notas sobre los trabajos efectuados por M. G. Huyghe, de la Universidad de Gante, (que han sido descritos detalladamente en "Précontrainte Prestres sing" (nº 1, 1952), para determinar el efecto de las bajas tempe raturas sobre las vigas de hormigón armado y de hormigón pretensado, y como este es el único trabajo recibido se discuten sus de talles y conclusiones.

2 - Descripción de las vigas y del ensayo

Se han ejecutado a 20°C y con materiales a la misma tem peratura, dos vigas de hormigón pretensado en T. de 30 cm. x 60 cm. y dos de hormigón pretensado en I. de 30 cm. x 40 cm., así - como cubos de 20 cm. y 10 cm. Las vigas tenían 6m.40 de longitud y se ensayaron a flexión sobre una luz de 6 m. Una viga de cada tipo fué colocada a los 28 días en una caja de madera, con los - cubos correspondientes y a lo largo del alma se colocaron pris - mas de nieve carbónica; después de 36 horas en que la temperatura de la viga y los cubos había descendido a -43°C, se sacaron de las cajas y se cargaron hasta rotura, siendo -40°C la temperatura al final de los ensayos. Las otras dos vigas y sus cubos fueron ensayados de igual modo a temperatura normal. Además se hi - cieron ensayos con un mortero conveniente para la inyección de - los cables.

3 - Resultados de los ensayos

La Tabla IV da los resultados de los ensayos. Las características del hormigón armado se describe en el apartado A, las del hormigón pretensado en el B y las del mortero en el C.

De los resultados obtenidos pueden deducirse las si - guientes conclusiones:

- 1º "La resistencia a la rotura del hormigón es bastante ma yor a -40ºC que a la temperatura normal, alrededor de dos veces para el hormigón A, una vez y un tercio para el B y una vez y 2/3 para el mortero".
- 28 "El módulo de rotura del hormigón es también más elevado, siendo 3,1 y 2,1 los factores por los que queda multiplicado para el hormigón A y el B respectivamente".
- 3º "El modulo E, de elasticidad también aumenta aunque en me nor proporción, siendo 1,22 y 1,11 los factores para A y B".
- 4º "Los ensayos de carga sobre las vigas confirman los resultados anteriores, encontrándose su carga de fisuración a rotura más elevada a -40ºC que a +20ºC y siendo su flecha más pequeña".

4 - Conclusiones

- 1º "Estos ensayos indican que el hormigón armado y el hormigón pretensado, ven aumentar su resistencia cuando la tem peratura baja de +20°C a -40°C".
- 2º "Las vigas de hormigón pretensado fueron realizadas con cables exteriores. y es posible que sus condiciones se me joren con cables interiores".

3º "La reducción de la flecha de las vigas puede decrecer ba jo efectos dinámicos, pero el profesor Magnel hace observar que esto no se ha establecido aún pues el aumento del módulo de elasticidad puede ser compensado por el aumento de la resistencia y del módulo de rotura.

TABLA I

CONDICIONES DE RESISTENCIA AL FUEGO PARA DIFERENTES CLASES DE EDIFICIOS

Clase de edificio	Altura, capacidad, superficie a de edificio (de un piso cualquiera)	
Edificio doméstico que de- be utilizarse en su mayor	a) pasando de dos pisos pero sin exceder de los 50 piés de altura o bien b) pasando de 1000 piés cuadrados pero sin ex- ceder los 2500 piés cuadrados en superfície	∲ hora
parte para vivienda	a) pasando de 50 piés o bien b) pasando de 2500 piés cuadrados	1 hora
Edificio que no deba ser	a) pasando 50 piés pero sin pasar de 75 b) pasando de 50000 piés cúbicos pero sin pa sar los 125000, en capacidad	½ hora
utilizado en su mayoría para vivienda	a) pasando los 75 piés en altura b) pasando los 125 piés cúbicos en capacidad	1 hora
Edificio público y alma- cén que no deba ser uti- lizado en su mayoría co- mo depósito	a) no pasando 50 piés en altura ó b) pasando los 50000 piés ³ sin pasar los 125000 en capacidad	½ hora
	a) pasando los 50 piés pero no los 75 en altura b) pasando los 125000 piés ³ pero no pasando de 250000 piés ³ en capacidad y sin pasar de 7500 piés ² en superficie	1 hora
	a) pasando los 75 piés de altura b) pasando los 250.000 piés3 en capacidad c) pasando los 7500 piés2 en superficie	2 horas
	a) pasando los 25 piés pero no los 50 en altura b) pasando los 25000 piés ³ pero no los 50000 piés ³ en capacidad	है ilora
Edificio de tipo almacén utilizado en su totali - dad o en mayoría como de pósito	pasando los 50000 piés ³ pero no los 125000 piés ³ en capacidad	1 hora .
	a) pasando los 50 piés pero no los 75 b) pasando 125000 piés ³ pero no los 250000 piés ³ en capacidad y no pasando de 7500 piés ² en su perficie	2 horas
	a) pasando de los 75 piés de altura b) pasando los 250000 piés ³ de capacidad c) pasando los 7500 piés ² de superficie	4 horas

T A B L A 11

DURACION DE LA RESISTENCIA AL FUEGO PARA LAS OBRAS DE HORMIGON ARMADO .

			Espesor mínimo en pulgadas (yeso excluído) para el período de			
	CONSTRUCCION	6	4	2	1	1
		horas				r:
Muros	Hormigón armado (2 capas en los muros o semejante en espesor) en dos direccio - nes separadas menos de 6 pulgadas entre ejes, 0,2% del volumen de hormigón con 1 pulgada de revestimiento mínimo	9	7	4	3	3
	Hormigón armado en masa (se incluyen las obras de placas planas y los forjados - construídos con "U" o "T" prefabricadas sin cielo raso). Espesor de hormigón		6 1	5 1	4 ½	3 1
Forjados	Forjados con elementos cerámicos huecos (se incluyen forjados construídos ente- ramente en el hormigón prefabricado en forma de cajón o en " ") Espesor total de los materiales incom - bustibles (revestimiento de techos ex - cluído)		5 1	3½ ½	3 1	2½ ½
Soportes	Soportes de hormigón armado con una armadura de tela metálica ligera de dos pulgadas colocada en el centro del recubrimiento de los aceros longitudinales. Soportes de hormigón armado		12	10 12	10	8
Vigas	Recubrimiento mínimo en pulgadas en vi- gas de hormigón armado		2 1	2	1½	1

TABLA II!
CONDICIONES DE CALENTAMIENTO DEL B.S.476:1932

Tiem	рос	lemperatur	a del horno
loras	Minutos	°C	oF.
0 /	5	5 3 8	1000
0 ′	10	7700140	1300
0	3 0	8 4 3	1.5 5 0
1	0	9 2 7	1700
2	. 0	1010	1850
4	0	1121	2050
5	0	1204	2200

TABLA IV

RESULTADOS DE LOS ENSAYOS DE M. HOYGHE

		a+20 ℃	a - 40 °C	Vuelta a +20 °C	
	Resistencia a la rotura sobre cubos de - 20 cm,	292	649		kg/cm ²
A	Resistencia a la rotura sobre cubos de -	261	455	315	kg/cm ²
	Módulo de rotura	37	114	42	kg/cm ²
	Módulo de elasticidad	365	450 . ,	390	t/cm ²
¥	Reséstencia a la rotura sobre cubos de -				2
	20 cm	570	794	615	kg/cm ²
В	10 cm.,.,,	643	820		kg/cm ²
	Modulo de rotura	51	108	61	kg/cm ²
	Módulo de elasticidad	402	450	420	t/cm ²
С	Resistencia al aplastamiento en cubos de 10 cm.,	372 ·	615	360	kg/cm ²

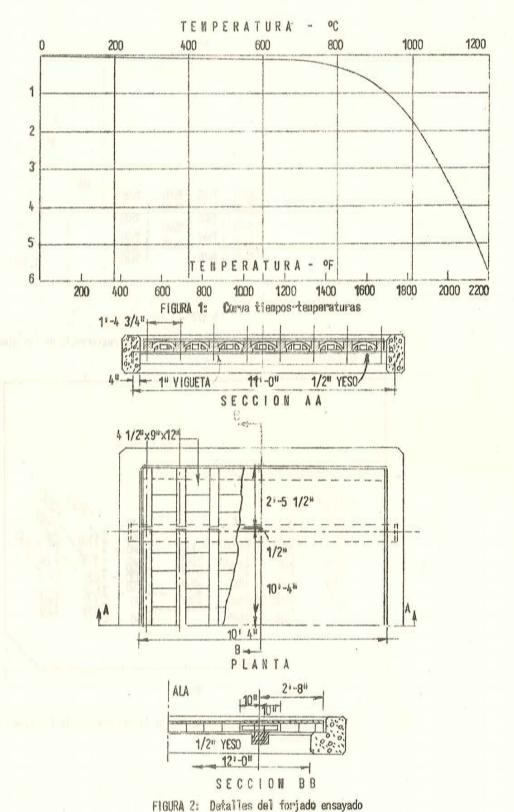


FIGURA 2: Denaites del torgado ensayado

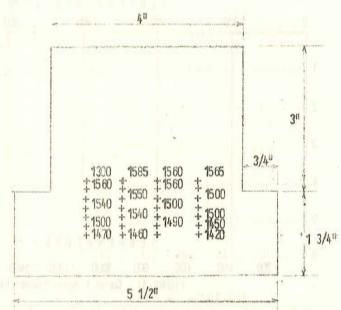


FIGURA 4: Sección de una vigueta en la que se indica la resistencia de los alambres. después del misayo.

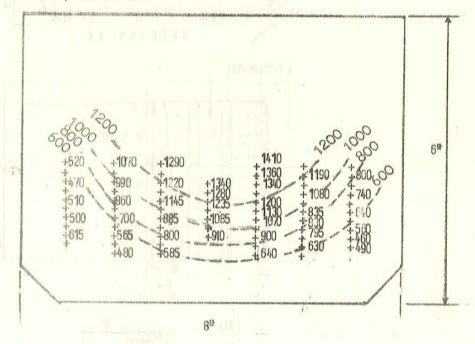


FIGURA 3º Sección de una viga en la que se indica la resistencia de los alambres después del ensayo.

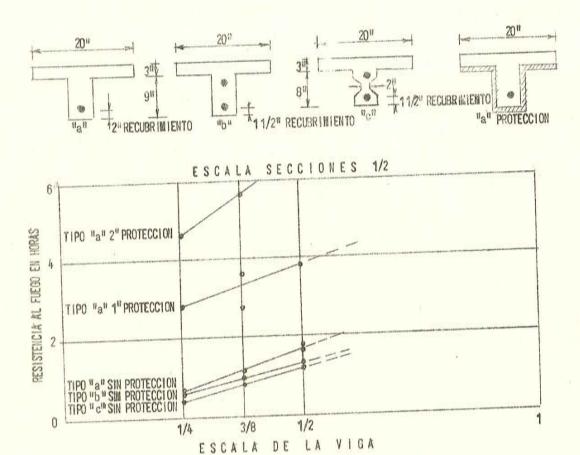
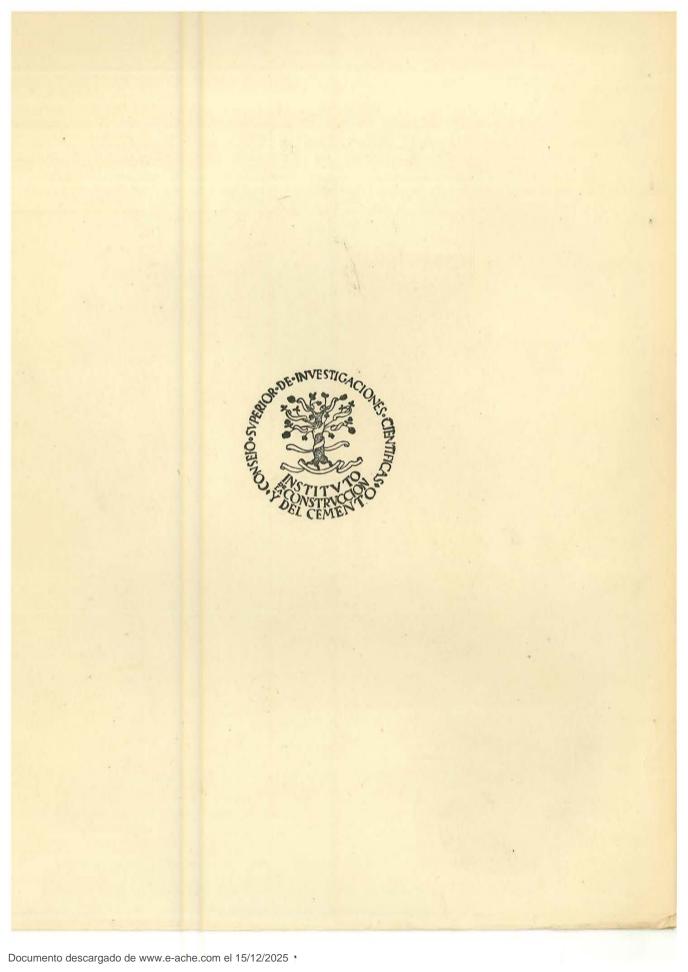



FIGURA 5: Resistencia al fuego de las vigas de hormigón pretensado

