ULTIMAS NOTICIAS SOBRE

hormigón pretensado

BOLETIN NUM. 37 DE LA ASOCIACION ESPAÑOLA DEL HORMIGON PRETENSADO DEL INSTITUTO TECNICO DE LA CONSTRUCCION Y DEL CEMENTO

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS Patronato "Juan de la Cierva" de Investigación Técnica

ULTIMAS NOTICIAS Técnicas en Estructuras Hormigén Pretensado Boletin de circulación limitada

Nº 37

Marzo-Abril 1957

- INSTITUTO TECNICO DE LA CONSTRUCCION Y DEL CEMENTO -

INDICE

104 20 3			pretensadas P.	1
	Petructuras	en acero preter	ngado Anónimo	 27

N O T A.- El Instituto, una de cuyas finalidades es divulgar los trabajos de investigación sobre la construcción y edificación, no se hace responsable del contenido de ningún artículo, y el hecho de que patrocine su difusión no implica, en modo alguno, conformidad con la tesis expuesta:

- Instituto Técnico de la Construcción y del Cemento -

457-3-7 OBSERVACIONES Y SIMPLIFICACIONES EN EL ESTUDIO DE LAS ESTRUC-TURAS HIPERESTATICAS PRETENSADAS

Piero Pozzati

-Sinopsis-

Procedimiento simple para el estudio del pretensado de vigas hiperestáticas, utilizando un diagrama de momentos, pretensado de vigas hiperestáticas con el esfuerzo normal variable, y consideraciones acerca del problema del pretensado de vigas empotradas elásticamente.

I. Observaciones preliminares

El problema del pretensado de una estructura hiperestática puede presentarse bajo el doble aspecto: de estudiar las solicitaciones de órganos de dimensiones conocidas por medio de diagramas o disponer las armaduras de pretensado de forma que se anule la influencia de los empotramientos hiperestáticos. En cualquiera de los dos casos pueden ser útiles las observaciones que se proponen que, si bien no son nuevas, y se hallan incluídas frecuentemente en las proposiciones generales admitidas hace tiempo (1), servirán para poder seguir más fácilmente cuanto se expondrá, así como para estudiar las cuestiones conocidas desde diversos puntos de vista.

⁽¹⁾ G. RAINERI: "El problema del pretensado sobre sólidos empotrados elásticamente" ("Giornale del Genio Civile", noviembre 1949). Las numerosas contribuciones dadas por Y. GUYON se pueden consultar on el cap. XII de "Cemento armado y pretensado" de C. CESTELLI-GUEJI, 1947, Hoepli, Milano. V. FRANCIOSI: "Sobre el cálculo de armadum.

a) Por ejemplo, si se trata del pórtico de la figura I, del que se quiere obtener un diagrama M de pretensado para la viga A-B, es importante notar que, aunque la observación pueda parecer obvia, cuando se representan los momentos por un diagrama M, se tie nen en cuenta las rotaciones A, P, de los extremos de la viga, y, en consecuencia, las rotaciones Pa, P, en los nudos correspondientes a los extremos de la viga.

Por tanto, admitido esto, el problema no presenta diferencia alguna respecto a lo que sucede cuando se corta la viga por un punto cualquiera, ya que aparecerán deformaciones, de un valor da do, en las dos caras formadas por el corte. Rota la continuidad de la viga por el corte, ésta se dividirá en dos partes, cuyos puntos liberados por el referido corte se hallarán en correspondencia y experimentarán movimientos de un valor dado.

Volviendo al ejemplo iniciado, calcularemos las rotaciones R, P, correspondientes para el diagrama de momentos M, lo que no presenta complicación alguna, porque como se sabe:

$$\overline{P_{a}} = \overline{I} \int_{e}^{e} \frac{M_{K}dx}{EJ} x, \quad \overline{P_{z}} = \overline{I} \int_{e}^{EJ} \frac{N_{K}dx}{EJ} x$$
[1]

y elementos pretensados" ("Industria Italiana y del Cemento", octubre 1950). En este artículo, el cálculo de las estructuras hiperestáticas con elementos pretensados se desarrolla elegantemente, utilizando las líneas de influencia de la coacción. Este procedimiento fué extendido por el mismo Franciosi a estructuras con elementos de eje curvilíneo (Sobre algunos problemas relacionados con el pretensado en las estructuras hiperestáticas, "Giornale del Genio Civile", diciembre 1950). De los textos, ya

Imaginemos ahora que la estructura carece del elemento pretensado A-B, que los nudos A y B se han incapacitado para realizar un desplazamiento relativo (2) y que los momentos desconocidos Ma, Mb (fig. 2), aplicados en A y B, se han calculado con la condición de provocar las rotaciones dadas ra, reconocidos reción de provocar las rotaciones dadas ra, reconocidos reción de provocar las rotaciones dadas reconocidos reconocidos reción de provocar las rotaciones dadas reconocidos reconocidos reción de provocar las rotaciones dadas reconocidos re

Si Fa,a, Fa, a = Fz,a, Fz, z son los coeficientes elás ticos para el pórtico privado del elemento A-B, las dos condiciones que determinan las rotaciones son:

Resulta pues que, si deben aplicarse los momentos M_a , M_b en los dos nudos A y B para obtener las condiciones impuestas, en la viga A-B tendremos los mismos momentos M_a , M_b , pero con distinto signo.

Una sección cualquiera de la viga A-B, considerada aispladamente (fig. 2), está por tanto sometida al momento $N_x \cdot e_x$, debido a la acción del cable, y al momento M_x , debido a los momentos extremos M_a , M_b (M_x = M_a x'/ ℓ + M_b x / ℓ).

numerosos, dedicados al estudio de las estructuras pretensadas recordamos: C. CESTELLI-GUIDI, ya citado, en el que se trata ex tensamente del pretensado sobre vigas hiperestáticas; G. MAGNEL: Le béton precontraint, libro III, Fecheyr, Sand, 1958; F. LEON-HARDT: Spannbeton fur die Praxis, cap. II, Ernst, Berlin, 1955.

⁽²⁾ Si el diagrama M correspondiente al elemento A-B lleva consigo, para el caso de eje no rectilíneo, un desplazamiento relativo, deberá aplicarse a la estructura restante un sistema do fuerzas capaces de realizar los desplazamientos que se deducen del diagrama dado.

Para realizar el valor impuesto $\overline{\mathbb{A}}_{\mathbf{x}}$ deberá, por tanto, tenerse:

$$N^{x} = X + M^{x} = \underline{M}^{x}.$$

De la (3) se deduce que, dado un valor para N_x , la excentricidad necesaria o, viceversa, dada la excentricidad, se obtiene el valor del esfuerzo normal.

b) Los momentos M_a , M_b son nulos cuando son nulas las rotaciones calculadas $\tilde{\varphi}_a$, $\tilde{\varphi}_{r-1}$

En tal caso la ecuación $\{3\}$ se transforma en $\mathbb{N}_{\mathbf{x}} = \mathbb{N}_{\mathbf{x}}$; y si $\mathbb{N}_{\mathbf{x}}$ es constante para las distintas secciones, el comportamiento del cable es semejante al del diagrama del momento \mathbb{N} y, por tanto, la cur va de las tensiones y el comportamiento del cable son concordantes (3) y no hay ninguna diferencia para una viga apoyada isostáticamento o no.

De otro modo, la curva de las tensiones y el comportamien to del cablo distan, la una del otro, en $\mathbb{N}_{\chi}^{\star}$ / \mathbb{N}_{\bullet}

c) Del examen de las ecuaciones (2) se puede deducir cuan do es posible obtener un diagrama \overline{M} de momentos.

Si están ya determinadas las condiciones de empotramiento para la viga puede obtenerse el diagrama $\overline{\mathbb{M}}$, solamente si $\overline{\mathbb{M}}$ 0 y $\overline{\mathbb{M}}$ 1 son compatibles con las condiciones de empotramiento, pues no se pue-

⁽³⁾ Véase la obra citada de C. CESTELLI-GUIDI, cap. XII, pág. 141 y siguientes.

den imponer condiciones incompatibles entre sí (4)

Así, pues, como ejemplo al caso que nos ocupa, se puede obtener un diagrama dado de M para una viga perfectamento empotrada en los extremos, únicamente si a tal diagrama le acompañan las rotaciones o y o nulas (5).

Sin embargo, cuando el entramado pretensado está unido a los arriostramientos por medio de elementos elásticos, es decir, cuando solamente algunas partes de la estructura están pretensadas el problema es, corrientemente, realizable, porque estos elementos pueden deformarse de tal manera que la sección que les une al entramado pretensado se adapte a la rotación resultante del referido diagrama M de momentos, y siempre que la sección que une a los elementos se adapte a la presencia de ésta.

d) Naturalmente las observaciones indicadas permanecen válidas, aun tratándose de diversos entramados para los que se calculó el diagrama M. A título de ejemplo examinamos rápidamente unos casos muy sencillos indicados en la figura 3.

El caso a) es realizable para cualesquiera que sean las condiciones de apoyo en C y D, porque como se ha dicho- los pies de rechos A-C y B-D permiten, con su deformación, satisfacer a las condiciones límites de la viga A-B y las de los apoyos C y D.

⁽⁴⁾ Si la sección A de una viga está perfectamente empotrada y el diagrama M exige una rotación y 10 para la sección A, deberán verificarse las condiciones (a = 0 (para el empotramiento) y (para el diagrama M).

⁽⁵⁾ En este caso, siendo perfectos los empotramientos, se tiene

(5) En este caso, siendo perfectos los empotramientos, se tiene

(6) En este caso, siendo perfectos los empotramientos, se tiene

(7) La este caso, siendo perfectos los empotramientos, se tiene

(8) La este caso, siendo perfectos los empotramientos, se tiene

(9) La este caso, siendo perfectos los empotramientos, se tiene

(9) La este caso, siendo perfectos los empotramientos, se tiene

(9) La este caso, siendo perfectos los empotramientos, se tiene

(9) La este caso, siendo perfectos los empotramientos, se tiene

(9) La este caso, siendo perfectos los empotramientos, se tiene

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(9) La este caso, siendo perfectos los empotramientos para

(10) La este caso, siendo perfectos los empotramientos para

(10) La este caso, siendo perfectos los empotramientos para

(10) La este caso, siendo perfectos los empotramientos para

(10) La este caso, siendo perfectos los empotramientos para

(10) La este caso, siendo perfectos los empotramientos para

(10) La este caso, siendo perfectos los empotramientos para

(10) La este caso, siendo perfectos los empotramientos para

(10) La este caso, siendo perfectos los empotramientos para empotramientos la este caso empotramientos la este caso empotramientos la este caso empotramientos la este caso empotramiento emp

En el caso del pórtico de la figura 3-b, el diagrama es compatible siempre que considerados los elementos A-B y A-C separadamente resulte, que de los diagramas M se deduzca que far = fac o bien (fig. c) que al considerar el semipórtico resulte nulo el des plazamiento horizontal de la sección C. Naturalmente, los momentos Mac y Mab que dan lugar los cables pueden resultar distintos. Si, por ejemplo, se tuviese far = 0, debería ser Mac = 0. Por lo tanto, si al pie derecho se le aplica un diagrama M distinto (fig. 3-d), el problema sigue siendo posible si el valor Mac satisface a la condición de compatibilidad.

Si el pórtico tiene los apoyos empotrados (fig. 3-e), el diagrama M debe ser tal que, separada la viga de los pies derechos, resulte: Paz = Paz y Pza = 0; o bien, considerando solamente los movimientos en la extremidad C, se ha de verificar que Pz = 0 y E=0.

El caso de la figura f, que será tratado más ampliamento en el párrafo f, no puede ser realizado porque, análogamente a la casos ya indicados, las rotaciones (a, fac de la sección A, con siderada como perteneciente a la viga o al pie derecho, son incompatibles entre si una es levégira, la otra destrógira (fig. 3-f); las ordenadas del diagrama llevan siempre el signo en correspondencia con el extremo tesado ; pues bajo otro punto de vista, resultaría que el valor de con sería nulo, lo que estaría en oposición con la presencia de la articulación.

tos; lo cual es natural, porque para lograr rotaciones no nulas en los nudos indeformables se necesitan momentos infinitos. Por lo tanto, el problema no admite solución.

Esto sólo sería posible cambiando el signo de una parte del diagrama (fig. 3-g), pero no obtendría un efecto útil desde el punto de vista práctico.

e) Cuando, por ejemplo, se da un diagrama M no compatible con la presencia de un vinculo para una viga, es fácil determinar qué parte de M puede ser aprovechable, ya que basta considerar la viga como simplemente apoyada en los extremos, semetida a los efectos del diagrama M, y hallar los momentos aplicables a los extremos para respetar la presencia del empotramiento, es decir, que basta determinar la posición de la recta de referencia compatible con las condiciones de empotramiento.

La superposición de los dos diagramas, el dado y el relativo a los momentos en los extremos, da lugar a un diagrama resultante aceptable.

f) No es posible confiar, ni siquiera parcialmente, de un diagrama dado M, si su comportamiento es similar al de los momentos debidos a la reacción R de un empotramiento hiperestático "rígido".

En efecto, a un comportamiento de este tipo, que puede imaginarse como debido a un valor determinado de la resultante R, le sigue, inevitablemente, un desplazamiento del punto de aplicación de dicha resultante, desplazamiento que, precisamente por la presencia de un empotramiento supuesto fijo, no puede suceder. Por lo tanto, análogamente a lo que se ha dicho precedentemente, también en este caso se obtendrían para los momentos M valores infinitos.

Esto es lo que ocurre en la viga continua de la figura 4, en la que el diagrama triangular M es semejante al de los momentos debidos a la reacción del apoyo central, considerando la viga

principal A-C; o a la reacción de uno de los apoyos laterales, al com siderar la viga principal B-C; o al momento mutuo de los tramos B-A y B-C, supuestos independientes. En este último caso, la imposibilidad de obtener el diagrama dado M es también evidente, porque solamente para los momentos M_D, que dan un diagrama de momentos semejantes al diagrama M (fig. 4), la sección B debe sufrir una rotación destrógira, por ser una sección extrema del tramo B-A, y, al mismo tiempo, una rotación levógira por ser una sección extrema del tramo B-C, lo que no es posible, porque, en el diagrama dado M, las rotaciones Concede deberían resultar de sentido opuesto, mientras que para la continuidad elástica deberían ser iguales y del mismo sentido. Naturalmente, la reacción del empotramiento hiperestático que provoca un diagrama semejante al M puede aplicarse también a una estructura hiperestática, siempre que los empotramientos hiperestáticos sean más de uno.

g) Consecuencias del comportamiento de un cable. Siun ele mento de una estructura hiperostática se halla sometido a la acción - de un cable que ejerce un esfuerzo normal N, al momento Ne, correspon diente a una sección del cable, se superpone, en general, el momento M₁ de los empotramientos hiperostáticos, que permanecen inoperantes si el elemento pretensado, considerado aislado y sometido al diagrama de momentos Ne, se deforma, de tal manera, que no perturbe la compatibilidad que debe existir entre las distintas partes unidas.

Por tanto tendremos:

$$M_{\text{total}} = N_{\Theta} + M_{i}$$

Naturalmente, puede estudiarse o un trazado del cable en el que N es constante o un diagrama N con un trazado determinado del cable para el cual sea $M_{\bullet}=0$.

Contrariamente, M_i es distinto de cero y puede influencier sensiblemente al momento que da lugar el cable, e incluso puede anularlo completamente.

Esto es lo que ocurre si, el diagrama Ne es semejante al de los mementos de la reacción de un empetramiento hiperestático rígido, es decir, si Ne y M_i tienen comportamientos semejantes. En tal caso debe resultar, en efecto, que en cada sección M_i = -Ne y, por tanto, M_{total} = 0, porque si ne fuera así, tendríamos un diagrama se mejante al de la reacción del vínculo y debería verificarse un movimiento incompatible con la misma presencia del empetramiento, receyendo, por tanto, en lo que se ha dicho ya en el punto precedente.

En este caso, los empotramientos hiperestáticos devuelven enteramente los efectos que dieron lugar los cables.

Esto es lo que sucede (6) en la viga continua sometida: la acción de cables rectilíneos (fig. 5), con excentricidades nulas en las secciones extremas. La viga está exenta de momentos flectore y todo se reduce a la presencia de las reacciones correspondientes: los apoyos. Los resultados son análogos en la viga empetrada de la misma figura 5.

h) Puede ser útil notar quo, dado un diagrama M de momentos para una viga continua, aplicable a otros tramos (figuras 3
b, e; fig 7), para que este diagrama sea posible ha de ser de tal
forma que presente la compatibilidad de un tramo con los contiguos.
Es decir, que si consideramos aisladamente los tramos, cada diagrama parcial de momentos debe dar rotaciones iguales en los extremos

⁽⁶⁾ A este propósito véase ol nº 143 de la obra citada de C. CESTE-LLI-GUIDI.

de cada uno de estos tramos, ya que en realidad se pueden considerar como saldados entre sí. De otro modo, si no fuera así, puede obtoner se un diagrama para un tramo y corregir los correspondientes a los tramos adyacentes.

Naturalmente, estos inconvenientes no existen si los dia gramas tienen en cuenta la continuidad o dan rotaciones nulas en las extremidades. Véase a este respecto el párrafo b del ejemplo I.

II. Empleo de un diagrama de momentos M, utilizando el método de Cross, en la determinación de los momentos hiperestáticos M.

a) La determinación de las reacciones hiperestáticas M es muy sencilla si se emplea el método de Cross. Si en la figura 1 consideramos los nudos D y E privados provisionalmente de una rotación, y tenemos en cuenta que sen conocidas las rotaciones correspondientes al diagrama M de momentos y el momento de inercia I que debe aplicarse a la viga A-D para que en su sección extrema A se verifique una rotación de ángulo , el momento de inercia en dicha sección es: 4 Rad (donde: R es la rigidoz de la viga). A la extremidad D se transmite el momento 2 Rad (admitiendo que la viga es de sección constanto).

Análogamente se calcularán los momentos de inercia en los otros elementos A-G, B-E, B-H y B-C. Para este último, puesto que el apoyo C es simple, el momento de inercia es: 3 R_{b-C} .

Determinados estos valores iniciales, el problema se podría dar por terminado si los nudos E y D no experimentasen rotación alguna. Puesto que no es así, se reparten los momentos entre las dis tintas barras, procediendo según el método de Cross, manteniendo sier

pre empotrados, en los sucosivos ciclos de reparto, los extremos de Λ-B, que ya han sufrido los ángulos de rotacion κ. γ. previstos.

Naturalmente, si las vigas no son de sección constante pueden utilizarse las rigideces y coeficientes de transmisión, que den tablas calculadas de acuerdo con las leyes admitidas para la variación de sección.

b) En numerosos casos no se precisa proceder por iteración, ya que el resultado puede obtenerse de forma directa como ocurre en los ejemplos 2 y 3, y, en general, en el estudio de placas curvas de revolución, para las que la condición estática de un borde puede considerarse independiente de la presencia de los otros contornos.

En general, tratándose de estructuras hiperestáticas corrientes, el momento M, correspondiente al extremo de un elemento pretensado, puede obtenerse analíticamente y con una aproximación excelente.

Sita es la rotación correspondiente al diagrama M, y W es la rigidez del nudo a que pertenece la viga, se tiene:

$$M^*a = \overline{P_a} > W$$
 [5]

con lo que se reduce el cálculo a una sola operación.

c) El método de las deformaciones puede también a veces resultar conveniente para determinar los momentos M, porque dado un diagrama M, correspondiente a una viga, las rotaciones en los nu dos a que pertenece la viga son conocidas.

d) En una estructura pretensada, los efectos debidos a la deformación causada por el esfuerzo normal no son habitualmente despreciables con relación a las deformaciones causadas por el momento flector (7), y se pueden tener en cuenta si se conoce el osfuerzo normal N, u otro dado. En este último caso debe estudiarse el comportamiento del cable.

Los efectos de la deformación resultan sencillos de es tudiar procediendo con el método de Cross, ya que basta calcular los desplazamientos o en los diversos extremos, producidos por el efecto de N (fig. 6), así como los momentos I, correspondientes a para los diversos elementos unidos a los miembros pretesados. Di chos momentos I valen 6 EJS/(1) si el extremo opuesto está empotrado efectiva o provisionalmente, y 3 EJS/ si está simplemente appoyado.

Obtenidos los desplazamientos y los momentos de inercia, se procede con las reparticiones y transmisiones propias al mótodo Cross.

EJEMPLO 1 .- Tratemos ahora de obtener el diagrama de momentos M correspondiente al entramado de la figura 7, en la que el tramo central es parabólico para el 2-3 y rectilíneo para el 2-1.

a) Las rotaciones correspondientes al diagrama son:

$$\sqrt{2}$$
 2-3 = -9^{L3}/24 EJ₂₋₃ + (9^{L3}/₁₆) L/2 EJ₂₋₃ = -9^{L3}/96 EJ (lovógira)

⁽⁷⁾ Véase el n. 152 de la obra citada de C. CESTELLI-GUIDI.

$$\overrightarrow{\varphi}_{2-1} = -\left(q \frac{L^2}{16}\right) \frac{1}{3} EJ_{1-2} = -q \frac{1^3}{96} EJ$$
 (véase el apartedo b de este capítulo).

$$\nabla_{1-2} = q \frac{1^3}{192} EJ$$
.

Los momentos I son:

$$M_2 - \frac{1}{10} = M_{2-\frac{1}{10}} = \frac{4 \text{ EJ}}{1}$$
, $\sqrt{\frac{1}{2}} = -417 \text{ q} \frac{1^2}{10.000}$

$$M_{1-a} = M_{1-5} = \frac{4 \text{ EJ}}{1} \sqrt{\frac{1^2}{48}} = 208 \text{ q} \frac{1^2}{10.000}$$

Calculados los momentos para los diversos extremos (figura 8) se obtiene:

$$M_{2-3}^* = -\left[(-417 - 403) \text{ q} \frac{1^2}{10.000} \right] : 2 = 0,041 \text{ q } 1^2$$

$$M_{2-1}^* = M_{2-3}^*$$

$$M_{1-2}^* = - (196+208) q \frac{1^2}{10.000} = - 0,0404 q 1^2$$

Según la ecuación [3], en las secciones 2-1 y 2-3 debe

[a]
$$M_{2-1} + N_{2-1} = 2-1 = \overline{M}_{2-1}$$
, $M_{2-3} + N_{2-3} = 2-3 = \overline{M}_{2-3}$

y para el equilibrio en el nudo 2:

$$\begin{bmatrix} b \end{bmatrix} \quad M_{2-1}^* + M_{2-3}^* = - \left(M_{2-6}^* + M_2^* - C \right).$$

Satisfecha la ecuación $\begin{bmatrix} b \end{bmatrix}$, a las expresiones M_{2-1}^* y M_{2-3}^* se les pueden dar valores arbitrarios, porque en la igualdad $\begin{bmatrix} a \end{bmatrix}$ forman parte N y e, es decir, el esfuerzo normal y la excentricidad del cable.

Obtenidos los momentos M, mediante la expresión [3] se calcula la excentricidad e del cable para un esfuerzo normal N o viceversa.

b) En este ejemplo han resultado iguales las rotaciones $(V_{2-3}, V_{2-1}, V_{2-1},$

para que $\stackrel{\text{Dicha corrección se hace calculando el momento I preciso para que <math>\stackrel{\text{P}}{\neq}_{2-1} = \stackrel{\text{P}}{\neq}_{2-3}$ y procediendo luego como habitualmente.

- c) Naturalmente, también puede desarrollarse el cálculo hallando los momentos M para el diagrama M de cada uno de los trama
- d) Los resultados, según lo que ya se ha dicho en el capítulo II párrafo b, dan una excelente aproximación para el cálculo de los momentos I, porque los pies derechos que unen las vigas corre pondientes al diagrama M tienen una rigidez pequeña.

EJEMPLO 2 .- Formación del diagrama parabólico de momentos \overline{M} para la viga 2-3 de la figura 9. En este caso (ver ejemplo 1) si $\stackrel{>}{\sim}_{2-3}$ = $9^{1b}/96$ EJ, los momentos serán:

$$M_{2-1} = \frac{4E.8J}{I}$$
 $\sqrt{p}_{2-3} = -0.333 \, 9^{1^2}$

$$M_{2-\overline{6}} = \frac{4EJ}{1} \cdot \stackrel{-}{p}_{2-3} = -0,042 \ 9^{12}$$

El procedimiento se ha aplicado a la figura 9, reduciéndose a pocas operaciones, porque, según se ha dicho en el capítulo II párrafo a, al nudo 2 no se le consienten más rotaciones que la $\frac{1}{2}$.

EJEMPIO 3. - Para el cálculo de un elemento del entramado de la terre de la figura 10, se han dibujado los diagramas M de momentos. En este caso si a, o son las rotaciones correspondientes a los diagramas dados, los momentos se calculan inmediatamento. Por ejemplo, si la posición es simétrica, para el pie derecho A-C tendromos:

$$M_{a-c} = 4 R P_a + 2 R P_c (si P_a = P_c = P, M_{a-c} = 6 R P).$$

Si la posición no es simétrica y los nudos se desplazan, se calculan los momentos en los diversos extremos de los pies derechos suponiendo que los nudos se hallan imposibilitados para traslación alguna y que los apoyos son ficticios, condición que no cambia nada respecto al cálculo precedente.

Se calculan después las reacciones correspondientes a los apoyos ficticios, que se añaden, cambiadas de signo, al pórtico de nudos que se hallan imposibilitados de rotación alguna, porque cada uno ha girado ya el ángulo correspondiente al diagrama.

Puede ser util notar que si las vigas se continúan forman do una ménsula conforme o no a un diagrama dado de M, los voladizos no tienen importancia alguna a los efectos de los momentos M, porque se adaptan sin oponerse a las rotaciones de las vigas de los tramos into ricres.

III. Utilización de las observaciones precedentes al redactar un proyecto práctico de estructuras.

a) Normal y prácticamente el diagrama no representa los momentos que actuan con pretensado (8), sino las tensiones máximas y mínimas que no deben ser rebasadas cuando se tiene, además del pretensado, no solamente la carga permanente (estado 1), sino también las sobrecargas (estado 2).

Fijados los cuatro valores de las tensiones en los extremos (fig.11), y determinado el valor del esfuerzo normal y las dimensiones de la sección más fatigada, es sencillo hallar las posiciones de los dos centros de presión C_1 y C_2 , correspondientes a los dos digeramas de tensiones correspondientes a los estados 1,2. Las posiciones de C_1 y C_2 pueden obtenerse por medio de las relaciones:

$$-\frac{N}{A} + \frac{N \cdot \overline{GC}_1}{\overline{W}} = \overline{U_1}, \qquad -\frac{N}{A} - \frac{N \cdot \overline{GC}_2}{\overline{W}} = \overline{U_2}$$

Con el fin de facilitar el estudio de las estructuras hiperestáticas, parece oportuno se refresque el comportamiento de los e

⁽⁸⁾ Habitualmente, para la sección más fatigada se determinan N, e, V W' (W, W' son los módulos de resistencia); o bien, si e es incompatible con la altura prefijada de la sección, N, W, W' (ver, pe ejemplo, el artículo citado en la nota 9). Sucesivamente puede ha llarse, con N constante, el trazado de la curva de las compresiona

bles en las vigas isostáticas, así como algunos datos dobre las rota ciones en los extremos de los elementos en determinados diagramas de momentos.

b) Vigas isostáticas sometidas a un esfuerzo normal constante: comportamientos límites de los cables. Si se quiere que en todas las secciones se verifique el diagrama de las tensiones en el estado 1, es decir, que en todas las secciones el empuje N pase por C₁, es preciso que el esfuerzo normal N, que actúa en correspondencia con la posición del cable, de un momento M equivalente a N pasando por C₁ en otros términos, es necesario que N se aplique a un punto O₁ tal que

$$N. \overline{O_1C_1} = M_p.$$
 [7]

Puesto que M es variable y el punto C₁ ha sido fijado, la posición O₁ del cable debe variar, aproximandose a C₁ cuando disminuya M_p. Así pues, es sencillo determinar una línea O₁, lugar de los puntos O₁ (fig. 12), tal, que si el esfuerzo del cable coincidio ra con ella en todas las secciones, se verificaría el diagrama correspondiente al estado l de las tensiones (fig. 11).

en vacío, es decir, actuando solamente el pretensado, situado en tre los dos límites (ver capítulo 3, párrafo b). De la curva_ de las presiones se obtiene fácilmente el diagrama de momentos M y, en consecuencia, el cálculo de los momentos M y de las excentricidades del cable, es decir, el trazado del cable. Naturalmente, para la sección más fatigada o para otra cualquiera puede suceder que la excentricidad del cable no es admisible porque es incompatible con la altura de la sección; para hacerla posible, según propuso Y.Guyon, pueden superponerse traslaciones rígidas al trazado del cable previamente hallado, es decir diagrama de momentos seme jantes a los debidos a las reacciones de los empotramientos hiperestáticos, sin cambiar por ello el diagrama Mobtenido. Con el procedimiento que se expondrá es posible actuar sobre el pretense do de estructuras hiperestáticas que poseen un esfuerzo normal veriable.

Análogamente, el momento total M_p + M_a puede definirse en cada sección un punto O_2 , tal que:

$$N. \overline{O_2C_2} = M_p + M_a,$$
 [8]

y trazarse la línea 02, lugar de los puntos 02, de tal forma que, si el cable coincidiera con 02 en todas las secciones, se tendría el dia grama correspondiente al estado 2 de las tensiones. Es fácil darse cuenta de la aceptabilidad de cualquier comportamiento de un cable comportado entre los dos trazados límites 01, 02.

c) <u>Vigas isostáticas sometidas a esfuerzo normal variable</u>: diagrama límites de los esfuerzos normales. Frecuentemente no es posible ni oportuno anclar todos los cables sobre la cabeza de la viga.

En este caso, on vez de determinar, una vez fijado el empu je N, las dos posiciones límites del cable O_1 y O_2 , conviene determinar el trazado O del cable y los 2 diagramas límites correspondientes a las normales n_1 , n_2 (9), como so puede ver en la figura 13. Por tanto, para conseguir que en todas las secciones pase N por C_1 y que se verifique el diagrama del estado I de las tensiones, tendremos:

$$N_1 \cdot \overline{OC}_1 = M_p$$
; [9]

al conocer la posición O del cable, se obtiene N1.

Para conseguir quo en todas las secciones pase N por C₂ y que se verifique el diagrama del estado 2 de las tensiones, debe cumplirse la condición siguiente:

$$N_2 \cdot \overline{OC_2} = M_p + M_a$$
 [10]

⁽⁹⁾ Véase P. POZZATI: "sobre el cálculo de las estructuras pretensadas (Bollettino Ingegneri, Architetti, Costruttori, Bologna, 1954).

Es fácil darse cuenta que cualquier diagrama de N comprej dido entre las curvas n_1 y n_2 , lugaros de los valores N_1 y N_2 , es a ceptable. Para más detalles sobre este particular, véase el artículo citado en la nota 9.

d) Para los desarrollos analíticos siguientes, será útil disponer de los valores correspondientes a las rotaciones en los extremos de una viga de sección constante con relación a determinados diagramas de momentos. Estos valores vienen dados en función de E o y para M negativo.

Diagrama parabólico sobre un trozo λ de la viga (fig. 14-a):

$$\varphi_{a} = -\frac{2}{3} M_{o} \lambda b : 1, \qquad \varphi_{b} = \frac{2}{3} M_{o} \lambda a : 1.$$
[11]

Diagrama de los momentos parabólico y simétrico (fig. 1)

$$\gamma_{d}^{o} = -\gamma_{d}^{o} = -\frac{2}{3} \text{ Mo } \lambda$$
. [12]

Diagrama parabólico de un trozo extremo de la viga (fig. 14-c)

$$\varphi_{a} = -\frac{M_{o} \lambda^{2}}{4 l}, \quad \varphi = \frac{2}{3} M_{o} \lambda (1 - \frac{3\lambda}{8}) : 1$$
[13]

Diagrama triangular de un trozo extremo de la viga (fig. 14-d):

$$Y_{a} = -\frac{M_{0}\lambda^{2}}{61}, \qquad Y_{b} = \frac{M_{0}\lambda}{2} \left(1 - \frac{2}{3}\right) : 1.$$
 [14]

e) En las vigas hiperestáticas es conveniente que los efectos debidos al pretensado se limiten exclusivamente a las partes provistas. Esto se consigue disponiendo el cable de manera que resulten nu los los movimientes de una sección, a fin de no inducir solicitaciones en las partes contiguas al elemento pretensado.

En este caso, no cambia nada respecto a lo que se ha dicho en los párrafos b y c, referentes a las vigas isostáticas y, por tanto se puede aprovechar la zona delimitada por dos trazados límites del cable si N es constante, o bien, los dos diagramas límites del esfuerzo normal si se ha adoptado un trazado particular del cable. En un caso u otro queda delimitada una zona, dentro de la cual debe disponerse el trazado del cable o el diagrama del esfuerzo normal.

Mientras que para las vigas isostáticas es aceptable todo trazado comprendido entre dichos límites, en Ras hiperestáticas sólo se han de hacer sentir en las partes pretensadas ara evitar las rotaciones que pudieran provocar reacciones en los elementos contiguos, condición que ha de tenerse presente al elegir el trazado del cable.

Si N es constante, hay que escoger uno de los infinitos tre zados de cables, de tal forma que las rotaciones sean nulas en los extremos. Las expresiones dadas para las rotaciones en el párrafo d podrán ser útiles a este objeto. También se podrá disponer un trazado del cable correspondiente a un diagrama de momentos que respeto aquella eq dición límite que se quiere obtener. En este caso, sin embargo, la solución no es, por lo general, la más económica.

Si el esfuerzo normal es variable y se fija un trazado determinado del cable, es preciso escoger uno, de entre los infinitos di gramas de N, que se halle comprendido entre los dos límites y, de tal manora, que provoque rotaciones nulas en los extremos. Esto resulta ser fácil si se tieno en cuenta que el trazado de los cables os frecuentemente muy parecido al parabólico, pero atribuyendo un esfuerzo normal constante a los trozos de cable que se hallan por encima o por debajo del eje de la viga, en cuyo caso pueden utilizarse los valores de
las rotaciones que se han hallado en el párrafo d del ejemplo 4.

Si los valores de N que anulan la rotación de uno o dos de los extremos salon de la zona comprendida entre las líneas n₁, n₂, se adopta un trazado ligeramente distinto del cable.

Como en la práctica se observa, generalmente, una ligera discrepancia con los resultados teóricos, una vez realizado el proyecto, debe efectuerse una comprobación (10)

EJEMPLO 4 .- Viga continua, protensada, simétrica y de tra tramos (fig. 15). So trata de determinar los valores del esfuerzo nome mal para un trazado dado del cable (fig. 16). Se supone que se aplica el pretensado cuando la viga está sometida exclusivamente a su propio peso.

Vigas espaciadas a 5 m

q' = sobrecarga permanento, excluído el peso propio de 1.250 Kg/m; q' = sobrecarga accidental de 750 Kg/m;

Valores máximos de las tensiones:

$$\mathcal{O}_1' = \mathcal{O}_2 = 120 \text{ Kg/cm}^2$$

 Ψ = (Coeficiente de forma)=0,55 (ver nota 9) H = 130 cm.

$$\xi = \frac{e}{0.5} + e = 0.9$$

⁽¹⁰⁾ Véase V. FRANCIOSI, primer artículo citado, nota 4.

Se empieza determinando los diagramas de los momentos má ximos y mínimos M₁, M₂ (fíg. 16), para lo cual se distribuyon las cay gas accidentales de forma opertuna.

a) Para la sección sometida a la máxima diferencia de momentos (11), se determinan los módulos de resistencia W, W' y el esfuerzo normal.N.

En este caso, la sección que dobe tomarse en consideración es la que está en correspondencia con el apoyo B (fig. 16) somo tida a la diferencia:

$$M_2 - M_1 = -226,9 - (-74,7) = -152,2 \text{ tm}$$

En consecuencia (12), se obtiono:

Conocidos los valores de A y J, y fijado el valor de espesor de ala s = 15 cm, resulta:

$$B = 78 \text{ cm}, \qquad b = 16 \text{ cm}.$$

⁽¹¹⁾ Como se sabe: $W = (M_2 - M_1)$: $(G_2 - G_1)$, $W' = (M_2 - M_1)$: $(G_1 - G_2)$ y, por lo tanto, para un mismo valor de W y

⁽¹²⁾ Para el cálculo de las secciones puede verse el artículo cita do en la nota 9.

b) Si $\mathcal{T}_1 = 0$ (ver ecuación 6), al esfuerzo normal le corres ponde una excentricidad GC_1 , tal que:

$$-\frac{N}{A} + \frac{N.\overline{GC}_1}{W} = 0$$
, de donde: GC = $\frac{W}{A} = 35,8$ (13)

 $Si \overline{U_2} = 0$, eM esfuerzo normal debe tener una excentricidad $\overline{GC_2} = 35.8$ cm, es decir, igual a $\overline{GC_1}$, porque la sección es simétrica.

Por tanto (fig. 16), al dibujar el trazado del cable resultante, se le dan excentricidades máximas en los tramos que tienen grax momento, dándole curvaturas de los menores valores posibles (14)

Conocidas las posiciones de los puntos C₁, C₂, también son conocidos los brazos OC₁, OC₂ correspondientes a las diversas secciones.

Conviene notar que, para determinar las posiciones de C_1 y C_2 , on el tramo de momentos positivos está C_1 por debajo del centro de gravedad G, mientras que C_2 está por encima. Lo contrario sucede para el tramo de viga donde los momentos son negativos, en el que C_1 está por encima de G, y C_2 por debajo.

⁽¹³⁾ Si se hubiera dado a , el valor hallado en el punto a (=11,4), las curvas n₁ y n₂ correspondientes a la sección B habrían resultado tangentes, dando menor posibilidad de acomodación del diagra ma de los esfuerzos normales (la acomodación cs tanto más factible cuanto más amplia sea la región comprendida entre n₁ y n₂). Po niendo = 0 se obtiene, siendo =-65,7 Kg/cm², , =2 . 65, 7 = -131,4 Kg/cm² en vez de =-120 Kg/cm², lo que se puede tener en cuenta para determinar la carga de seguridad.

⁽¹⁴⁾ Observaciones sobre el trazado de cables expuestas on el artículo citado en la nota 9.

Para aclarar este hecho basta recordar que C_1 es el punto de aplicación de la resultante del esfuerzo normal y del momento mínimo M_1 , mientras que C_2 es el punto de aplicación de la resultante do M_1 y del momento máximo M_2 ; por tanto, C_1 se encuentra desplazado del lado del centro de gravedad O de los cables. Naturalmente, si la sección os simétrica, C_1 y C_2 están igualmente separados de G.

En el cuadro adjunto se dan, para las secciones $2, 4 \dots$... B, los valores de los momentos M_1 , M_2 ; los brazos OC_1 , OC_2 , y los de los esfuerzos normales N_1 , N_2 , calculados de acuerdo con las ecuaciones 9 y 10.

1 - Secciones ... 2 16 B 4 6 10 12 14 18 8 M₁ (tm) 39,3 34.1 46,9 43,6 28,7 12,0 -3,6 -39,6 -74,7 OC, (cm) 23 10 20 23 19 8 10 N₁ (t) 341 207 495 325 209 190 207 M₂ (tm) 64,7 -226,9 138,4 147,2 137,4 62.1 -32,5 -120,4 110,9 109,1 OG₇ (cm) 60 41 80 95 60 80 92 94 ' 90 81

Tramo A-B

Análoga y sencillamente, se calculan las curvas límites de n_1 y n_2 para el tramo central (fig. 16).

153

157

135

103

79

151

239

Cualquier diagrama del esfuerzo normal interno de n₁, n₂ es aceptable.

Según lo que se ha dicho, debe determinarse el valor del esfuerzo normal N que debe darse a la parte de cable que corre por de

N₂ -(t)

108

138

150

bajo del eje de la viga, con objeto de anular la rotación en la sección B que separa al tramo contiguo.

Para un trozo de cable s, comprendido entre las secciono 16 y B (fig. 15), siendo $\lambda = 5.5$ m, se tiene, según la ecuación [13]:

$$R_{b} = -\frac{2}{3} \text{ M}_{b} \cdot 5,5 (25 - 3.5,5/8)$$
: 25 EJ = -3,36 M_b/EJ

Para el trozo de cable i, comprendido entre las seccione A y 16, siendo,

$$\lambda = 19,5 \text{ m}, \qquad \underline{a} = 9,75 \text{ m}, \qquad \underline{b} = 15,25 \text{ m},$$

resulta , según la ecuación [11] :

$$P_{b} = \frac{2}{3} M_{8} \cdot 19,5 \cdot 9,75/25 = 5,08 M_{8}$$

Debiendo ser $\mathcal{C}_{b}^{i} = \mathcal{C}_{b}^{ii}$ se obtiene 5,08 $M_{8} = 3,36 M_{b}$; también, llamando a los osfuerzos normales de los trazos situados rencima y por debajo del ejo de la viga N_{s} y N_{i} , respectivamente, y doptando para las dos secciones 8 y B excenticidades máximas iguale tendremos:

$$5,08 \text{ Ni} = 3,36 \text{ N}_{s}$$

por lo que:

$$Ni = 0,66 N_s = 0,66 . 258 = 171 t .$$

Análogamente se calculará el esfuerzo normal para el t mo central B-C.

Según cuanto se ha dicho, no es posible, prácticamente, la concordancia absoluta entre el resultado teórico y el obtenido en obra En este caso, por ejemplo, no se puede efectuar una variación brusca del esfuerzo normal. Después de haber adoptado un trazado para los cables, pasando gradualmente de un valor a otro del esfuerzo normal, se hallan los movimientos eventuales de las secciones extremas de los diversos tramos, suponiéndolos independientes con objeto de determinar o diagrama de Ne, así como las reacciones hiperestáticas necesarias para establecer las condiciones de equilibrio. Los momentos totales se obtienen superponiendo los efectos según la ecuación [4].

El cálculo de comprobación no presenta ninguna diferencia respecto a los que normalmente se aplican a las estructuras hiperestáticas (ver nota 10), ya que basta considerar los movimientos debidos a diagrama Ne, aplicado a la estructura transformada en isostática, com medida de los movimientos debidos a las cargas.

- Instituto Técnico de la Construcción y del Comento -

591-7-2 ESTRUCTURAS EN ACERO PRETENSADO

"Journal de la Construction de la Suisse Romando" Agosto, 1956.

Hasta ahora, las construcciones metálicas no han aprovecha do apenas las posibilidades ofrecidas por el regulamiento de los esfue zos, cuyo objeto os crear en la obra, con anterioridad a su puesta er servicio, tensiones iniciales de sentido contrario a las tensiones de servicio. Esto se debe al hecho de que los constructores no disponían de materiales cuyas características permitieran recuperar eficazmente los esfuerzos suplementarios aplicados inicialmente a la obra.

En un informe sobre el "estudio de las posibilidades ofrecidas por la regulación de los esfuerzos", el profesor Magnel considera que la idea de pretensado puede extenderse a las obras metálicas de gran luz y ha justificado este punto de vista realizando ensayos en es cala industrial, con vigas de celosía, cuyo tesado inicial se realizó mediante hilos de acero, de resistencia muy elevada, idénticos a los en pleados en las obras de hormigón pretensado.

La economía en peso y precio a que esta idea conduce, ha i citado a proseguir las investigaciones en este campo con vistas a aplicaciones inmediatas.

Este programa comprende principalmente:

- establecimiento de un método práctico de cálculo;
- ensayos de carga sobre una obra en curso de realización, y
- ensayos de carga estática y dinámica sobre vigas experimentales.

En el curso de estas investigaciones, el profesor Magnel expresa la opinión de que, en las estructuras metálicas, no así en las de hormigón, la compresión puede justificarse tan sólo por razones de economía.

Este método consiste en aplicar a un elemento o un conjunto, destinado a trabajar en extensión, un tesado conocido de compresión.

La teoría se desarrolla partiendo del caso más simple -e de un tirante sometido a una tracción simple- para llegar al cálculo de una viga de celosía provista de un cable de pretensado; por último, se aplica como ejemplo al cálculo de una viga.

El caso más simple puede ilustrarse con el ejemplo de un tubo de acero dulce, por el interior del cual se extiende un cable d acero de altura resistencia.

Los cálculos relativos a los coeficientes de fatiga en e tubo y en el cable, muestran que, si P₁ es el peso del conjunto pre comprimido y P el peso de un tubo ordinario no comprimido de una se ción suficiente con la misma carga:

$$\frac{P_1}{P} = \frac{1}{\beta},$$

siendo β la relación de los alargamientos respectivos en los dos casos.

Esta ecuación demuestra que si hacemos, por ejemplo, = S, es decir, si se acepta para una tracción dada un alargamiento de ble del que daría, en las mismas condiciones de seguridad, un tubo de acero dulce, el peso del elemento precomprimido se vería disminuído en un 50 %. En lo que se refiere a la viga de celosía pretensada, el proyecto se establece, primeramente, según el sistema clásico, y des pués semetiendo de nuevo la viga a un pretensado ejercido por un cable tendido entre las dos extremidades de la viga y cuyas extremidades están levantadas. Las tensiones en el acero dulce se estudian en dos casos:

- a) en el momento en el que se acaba el pretensado
- b) después de la acción de cargas adicionales.

Tanto en el caso de la viga clásica como en el de la viga pretensada, las flechas y los coeficientes de seguridad son los mismos.

Las tensiones en las partes inferiores de la estructura son muy débilos.

El emploo del pretensado aporta una ganancia apreciable emposo y en precio de coste.

Para equilibrar las tensiones en las diversas partes de los cables conviene tensarlos uno después de otro, aplicándoles una tensión decreciente en progresión aritmética.

La aplicación práctica se ha llevado a cabo en la construcción de la viga maestra de un hangar para aviones.

Esta viga tiene dos tramos de una luz de 76,50 m cada uno y se encuentra comprimida por la acción de dos haces de cables, cada uno de los cuales parte de la extremidad de un tramo, para conducir a un nudo de enrejado situado en el tercio del otro tramo.

La estructura es de acero dulce, roblonado y pretensado por des haces de 64 hilos de 7 mm de diámetro.

En el momento del pretensado, la carga que resulta del pe

so muerto de la viga y de la estructura secundaria era de 122 t + 26; t: o sea: 385 t.

La sobrecarga permanente aplicada después del pretensado es debida a la cubierta y a los diveros accesorios, y se eleva a 352 lo que hace ascender a 737 t la carga permanente total.

Las sobrecargas debidas a la nieve y al viento, pueden si poner sobre la anterior unas 240 t.

El cálculo se ha hocho, primeramente, sin pretensado; des pués se han calculado los pretensados en las barras, en función de la tensión de los cables, y por último, se ha calculado el aumento de la tensión en los cables, debida a la aplicación de las sobrecargas.

La tensión inicial en el cable no sobrepasa los 80 Kg/mm' y se ha admitido una pérdida del 9 % de la tensión inicial.

Comparando el peso de esta viga con el de una viga clásic (sin pretensar) se ha comprobado que se logra una economía del 12 % e peso y del 4 % en precio.

El interés de este sistema de construcción aumenta cuanto mayor sea la luz y más importante sea el peso de la viga en relación con la carga total.















