

EN 1992

Design of concrete DStructureSrgado de www.e-

proes.

2nd generation of Eurocode 2 on concrete structures Madrid, October 17th, 2023

Contents

- 1. Green concretes
- 2. Unification of the design compressive strength of concrete f_{cd}
- 3. Adjustment of partial factors for materials

1. Green concretes

Green concretes

- Composition: Replace cement > another binder (fly ashes...)
- Objective: Reduce carbon footprint
- Consequence: Slower strength development

Open door to use green concretes

5.1.3 (2) allows ages t_{ref} higher than 28 days

- (2) The value for t_{ref}
- (i) should be taken as 28 days in general; or
- (ii) may be taken between 28 and 91 days when specified for a project.

Different compressive strengths of concrete

Design compressive strength of concrete f_{cd}

$$f_{cd} = \eta_{cc} \cdot k_{tc} \frac{f_{ck}}{\gamma_{C}} \begin{cases} \eta_{cc} = \left(\frac{f_{ck,ref}}{f_{ck}}\right)^{\frac{1}{3}} \leq 1,0 \quad \text{where} \quad f_{ck,ref} = 40 \text{ MPa} \\ k_{tc} = \int_{0}^{1,0 \text{ if } t_{ref}} \leq \begin{cases} 28 \text{ days}(CR,CN) \\ 56 \text{ days}(CS) \end{cases} \\ \log \log \dim e \\ \gamma_{C} = \gamma_{C} \cdot \gamma_{R} \cdot \eta_{is} \end{cases}$$

$$Control specimen \rightarrow Undisturbed structure$$

$$Material and geometrical uncertainties$$

 η_{cc} calibrated with columns in laboratory

Advantages of new fcd

v is not dependent of f_{ck} (shear, punching, struts&ties...) simplification of stress distributions modifications of parabola-rectangle diagram improve results

SHEAR 8.2.3

- (6) A value v = 0.5 may be adopted when using the angles of the compression field given in (4).
- (7) Angles of the compression field inclination to the member axis lower than θ_{\min} given in (4) or values of factor ν higher than according to (6) may be adopted provided that the ductility class of the reinforcement is B or C and that the value of factor ν is calculated on the basis of the state of strains of the member according to:

$$\nu = \frac{1}{1,0 + 110 \cdot (\varepsilon_{x} + (\varepsilon_{x} + 0.001) \cdot \cot^{2}\theta)} \le 1,0$$
(8.45)

where ε_x is the average strain of the bottom and top chords calculated at a cross-section not closer than $0.5 \cdot z \cdot \cot\theta$ from the face of the support or a concentrated load:

Advantages of new fcd

v is not dependent of f_{ck} (shear, punching, struts&ties...) simplification of stress distributions modifications of parabola-rectangle diagram improve results

SHEAR WEB-FLANGES 8.2.5

(4) The transverse reinforcement in the flange $A_{\rm sf}$ may be determined as follows:

$$\tau_{\rm Ed} \le \frac{A_{\rm sf}}{s_{\rm f} \cdot h_{\rm f}} \cdot f_{\rm yd} \cdot \cot \theta_{\rm f} \tag{8.69}$$

To prevent crushing of the compression field in the flange, the following condition should be satisfied:

$$\sigma_{\rm cd} = \tau_{\rm Ed}(\cot\theta_{\rm f} + \tan\theta_{\rm f}) \le \nu \cdot f_{\rm cd} \tag{8.70}$$

where the following strength reduction factor may be used:

$$\nu = 0.5 \tag{8.71}$$

Advantages of new fcd

v is not dependent of f_{ck} (shear, punching, struts&ties...) simplification of stress distributions modifications of parabola-rectangle diagram improve results

TORSION 8.3.3

(3) The torsional strength, when governed by crushing of the compression field in concrete, may be calculated from:

$$\tau_{t,Rd,max} = \frac{\nu \cdot f_{cd}}{\cot \theta + \tan \theta} \tag{8.84}$$

where ν may be determined by the formulae in Annex G. A value of $\nu = 0,60$ may be used when $\cot \theta = 1,0$.

Advantages of new fcd

v is not dependent of f_{ck} (shear, punching, struts&ties...) simplification of stress distributions modifications of parabola-rectangle diagram improve results

STRUT & TIE 8.5.2

a) for compression fields and struts crossed or deviated by a tie at an angle:

$$-20^{\circ}$$
≤ θ_{cs} < 30°

$$\nu = 0.4$$

(8.115)

$$-30^{\circ}$$
≤ θ_{cs} < 40°

$$v = 0.55$$

(8.116)

$$-40^{\circ}$$
≤ θ_{cs} < 60°

$$\nu = 0.7$$

$$-60^{\circ}$$
≤ θ_{cs} < 90°

$$\nu = 0.85$$

Alternatively, the value of factor ν may be determined as:

$$\nu = \frac{1}{1,11 + 0,22 \cdot \cot^2 \theta_{cs}}$$

(8.119)

 for compression fields and struts in a region without transverse cracking (e.g. when transverse compressive stresses are present)

$$\nu = 1.0$$

(8.120)

Advantages of new fcd

v is not dependent of f_{ck} (shear, punching, struts&ties...) simplification of stress distributions modifications of parabola-rectangle diagram improve results

- a) cross-section
- b) assumed strain distribution
- c) parabola-rectangle stress distribution
- d) rectangular stress distribution

Figure 8.2 — Stress distributions within the compression zone

Definition of hypothesis for partial factors of materials Procedure to modify partial factors of materials New partial factor for concrete on shear γ_V Use of design value of effective depth on shear

Definition of hypothesis for partial factors of materials

Table 4.3 (NDP) — Partial factors for materials

Design situations — Limit states	γ _s for reinforcing and prestressing steel	$\gamma_{\rm C}$ and $\gamma_{\rm CE}$ for concrete	γ_{V} for shear and punching resistance without shear reinforcement
Persistent and transient design situation	1,15	1,50 ^a	1,40
Fatigue design situation	1,15	1,50	1,40
Accidental design situation	1,00	1,15	1,15
Serviceability limit state	1,00	1,00	l

NOTE $\,$ The partial factors for materials correspond to geometrical deviations of Tolerance Class 1 and Execution Class 2 in EN 13670.

Tolerance Class 1 Execution Class 2

EN 13670 "Execution of concrete structures"

The value for y_{CE} applies when the indicative value for the elastic modulus according 5.1.4(2) is used. A value $y_{CE} = 1,3$ applies when the elastic modulus is determined according to 5.1.4(1).

Definition of hypothesis for partial factors of materials

 $Table \ A.3 - Statistical \ data \ assumed \ for \ the \ calculation \ of \ partial \ factor \ defined \ in \ Table \ 4.3 \ (NDP)$

	Coefficient of variation	Bias factor ^a
Partial factor for reinforcement γ _S		•
Yield strength f _y	$V_{\rm fy}=0.045$	$f_{\rm ym}/f_{\rm yk} = \exp(1,645V_{\rm fy})$
Effective depth d	$V_{\rm d} = 0.050^{\rm b}$	$\mu_{\rm d} = 0.95^{\rm b}$
Model uncertainty	$V_{\theta s} = 0.045^{\circ}$	$\mu_{\theta s} = 1,09^{c}$
Coefficient of variation and bias factor of resistance for reinforcement	$V_{\rm RS} = 0.081^{\rm i}$	$\mu_{RS} = 1,115^{i}$
Partial factor for concrete γ _c		
Compressive strength f_c (control specimen)	$V_{\rm fc} = 0,100$	$f_{\rm cm}/f_{\rm ck} = \exp(1,645V_{\rm fc})^{\rm d}$
Insitu factor $\eta_{is} = f_{c,ais}/f_c e$	$V_{\eta is} = 0,120$	$\mu_{\eta is} = 0.95$
Concrete area A _c	$V_{\rm Ac} = 0.040$	$\mu_{Ac} = 1,00$
Model uncertainty	$V_{ ext{Hc}} = 0.070^{ ext{f}}$	$\mu_{\theta c} = 1,02^{f}$
Coefficient of variation and bias factor of resistance for concrete	$V_{\rm RC} = 0.176^{\rm i}$	$\mu_{RC} = 1,142^{i}$
Partial factor for shear and punching γ _V (see 8.2.1, 8.2.2, 8.4, 1.8.3.1, 1.8.5)		
Compressive strength f_c (control specimen)	$V_{\rm fc} = 0.100$	$f_{\rm cm}/f_{\rm ck} = \exp(1,645V_{\rm fc})^{\rm d}$
Insitu factor $\eta_{is} = f_{c,ais}/f_c e$	$V_{\eta is} = 0,120$	$\mu_{\eta is} = 0,95$
Effective depth d	$V_{\mathrm{d}}=0.050^{\mathrm{b}}$	$\mu_{ m d} = 0.95^{ m b}$
Model uncertainty	$V_{ m \theta v}=0$,1078	$\mu_{\rm \theta v} = 1,10^{\rm g}$
Residual uncertainties	$V_{\rm res,v}=0.046^{\rm h}$	-
Coefficient of variation and bias factor of resistance for shear and punching (members without shear reinforcement)	$V_{\rm RV}=0,137^{\rm i}$	$\mu_{\rm RV} = 1,085^{\rm i}$
The values in this column refer to ratio between mean value and values used in the design f	ormulae (characterist	ic or nominal).

Procedure to modify partial factors of materials

$$R_{c} = f_{c,cyl} \cdot \eta_{is} \cdot A_{c} \cdot \theta_{c} \begin{cases} f_{c,cyl} : compressive \ strength \ of \ the \ control \ specimen \\ \eta_{is} : f_{c,cyl} \rightarrow f_{c,ais} \\ A_{c} : area \ of \ concrete \\ \theta_{c} : model \ uncertainty \end{cases} f(log \ R_{c})$$

$$V_{\text{Rc}} = \frac{\sigma_{\text{Rc}}}{R_{\text{cm}}} = \sqrt{V_{\text{fc,cyl}}^2 + V_{\text{\eta is}}^2 + V_{\text{Ac}}^2 + V_{\text{\theta c}}^2}$$

$$\mu_{\text{Rc}} = \frac{R_{\text{cm}}}{R_{\text{ck}}} = \mu_{\text{fc,cyl}} \cdot \mu_{\text{\eta is}} \cdot \mu_{\text{Ac}} \cdot \mu_{\text{\theta c}} \text{ where } \mu_{\text{fc,cyl}} = \frac{f_{\text{cm}}}{f_{\text{ck}}} = e^{\text{1,645 V}_{\text{fc}}}$$

$$\left| \gamma_{c} \right. = \frac{R_{cd}}{R_{ck}} = \frac{e^{\alpha_{R} \cdot \beta_{tgt} \cdot V_{Rc}}}{\mu_{Rc}} \right|$$

Table A.4 (NDP) — Sensitivity factors for resistance α_R and target values for the 50-year reliability index β_{tgt}

Design situations/Limit states	Sensitivity factors for resistance α_R	target value for the 50-year reliability index $eta_{ ext{tgt}}$		
Persistent or transient design situation	0,8	3,8		
Fatigue design situation	8,0	3,8		
Accidental design situation	0,8	2,0		

Procedure to modify partial factors of materials Specific cases table A1

- Tolerance Class 2 instead of Class 1
- Geometrical data measured with lower CoV
- Concrete strength assessed by core tests
- Reinforcement yield strength assessed by tests
- Use of refined methods to verify the structure
- Use of non-linear analysis with separate consideration of model uncertainty
- Different target value for the reliability index
- Use of design value of effective depth on shear

Procedure to modify partial factors of materials Specific cases table A1

Tolerance Class 2 instead of Class 1

Table A.1 (NDP) — Values of adjusted material factors - General

Condition for adjusted material factors		persistent and transient design situations			accidental design situations		
	γs	γc	γv	γs	γc	γv	
	1,08	1,48	1,33	0,97	1,15	1,11	
a) if the execution ensures that geometrical deviations of Tolerance Class 2 according to EN 13670 are fulfilled	in case also at least one of the conditions d), e) f) or h) is fulfilled, the partial factors may be					may be tatistical in (8) for sistance	

New partial factor for concrete on shear γ_V

- Model uncertainties become dominant
- Influence of variability of \mathbf{f}_c is reduced \rightarrow exponent 1/3
- Better fitting of the formulation with data bases
 - (2) The design value of the shear stress resistance should be taken as:

$$\tau_{\text{Rd,c}} = \frac{0.66}{\gamma_{\text{V}}} \cdot \left(100\rho_{\text{l}} \cdot \frac{f_{\text{ck}}}{d}\right)^{\frac{1}{3}} \ge \tau_{\text{Rdc,min}}$$

$$(8.27)$$

where

$$\rho_{\rm l} = \frac{A_{\rm sl}}{b_{\rm w} a}$$

 A_{sl} is the effective area of tensile (see Figure 8.7);

(1) The design punching shear stress resistance should be calculated as follows:

$$\tau_{\text{Rd,c}} = \frac{0.6}{\gamma_{\text{V}}} \cdot k_{\text{pb}} \left(100 \, \rho_{\text{I}} \cdot \frac{f_{ck}}{d_{\text{V}}} \cdot \frac{d_{\text{dg}}}{d_{\text{V}}} \right)^{\frac{1}{3}} \le \frac{0.5}{\gamma_{\text{V}}} \cdot \sqrt{f_{\text{ck}}}$$

$$(8.94)$$

where

$$\rho_l = \sqrt{\rho_{l,x} \cdot \rho_{l,y}} \tag{8.95}$$

New partial factor for concrete on shear γ_V

- Model uncertainties become dominant
- Influence of variability of f_c is reduced → exponent 1/3
- Better fitting of the formulation with data bases

Design situations — Limit states	$\gamma_{ m C}$ and $\gamma_{ m CE}$ for concrete	γ_V for shear and punching resistance without shear reinforcement
Persistent and transient design situation	1,50 ^a	1,40
Fatigue design situation	1,50	1,40
Accidental design situation	1,15	1,15
Serviceability limit state	1,00	_

Use of design value of effective depth on shear

- Thin members: geometrical uncertainties govern
- Deep members: geometrical uncertainties negligible
- More rational to use d_d
- Reduced values of γ_V and γ_S can be obtained

(6) The statistical data of the effective depth in Table A.3 may be replaced by $V_d = 0.00$ and $\mu_d = 1.00$ if the calculation of the design resistance is based on the design value of the effective depth d_d :

$$d_{\rm d} = d_{\rm nom} - \Delta d \tag{A.8}$$

where

 Δd is the deviation value of the effective depth:

 $\Delta d = 15 \text{ mm}$ for reinforcing and post-tensioning steel;

 $\Delta d = 5 \text{ mm}$ for pre-tensioning steel.

NOTE 1 The design value of the effective depth d_d can be used unless the National Annex gives limitations.

Use of design value of effective depth on shear

- Thin members: geometrical uncertainties govern
- Deep members: geometrical uncertainties negligible
- More rational to use d_d
- Reduced values of γ_V and γ_s can be obtained

Condition for adjusted material factors	persistent and transient design situations			accidental design situations		
	γs	γc	γv	γs	γc	γv
if the calculation of design resistance is based on the design value of the effective depth according to (6)	1,03	1,50	1,29	0,94	1,15	1,07

