Durability in the new Eurocode 2 and future EN206-100

M.ª Carmen Andrade

David Izquierdo *International Center for Numerical Methods in Engineering-(CIMNE)-Spain ** Polytechnical University of Madrid-Spain

2nd generation of Eurocode 2 on concrete structures

Madrid, October 17th, 2023

Design of concrete Destrigatures

EN 1992

DURABILITY IN CHAPTER 6

- 1. A small change in the definition of the XC2
 - 1. The Exposure classes are incorporated as "environmental actions"
- 2. Cover depths in fuction of the ERC's and the XC's and calibrated with durability models
 - 1. There will be an EN 206-100 for verification of durability
 - 2. The previous methodology will be allowed
 - 3. It is introduced a new LIMIT state in addition to depassivation
 - 1. Condition or Deterioration LS
 - 2. In includes a corrosion propagation period
 - 1. 50 µm of homogeneous attack
 - 2. 500 µm of localized attack
- 3. Cover depths for stainless steel bars.
- 4. Annex I Assessment of existing structures

PREVIOUS METHODOLOGY FOR DURABILITY DESIGN AND INTRODUCTION OF ERC'S

cover depths

Exposure classes + Structural classes

	with EN 206-1	$\sim \langle \mathbf{C} \rangle$
Clase designation	Description of the environment	informative examples where exposure classes may occur
1 No risk of	corrosion or attack	10,510
XD	For concrete without reintproement or embedded metal: all exposures except where there is freeze/thaw, abrasion or chemical attack For concrete with reinforcement or embedded metal way rity.	
2 Correalor	Induced by carbonation	
XC1	Dry or permanently wet	Concrete inside buildings with low air humidity Concrete nembranity submerced in water
XC2	Wet, rarely dry	Concrete surfaces subject to long-term water contact
XC3	Moderate humidity	Concrete inside buildings with moderate or high air hum/dty/ External concrete sheltered from rain
XC4	Cyclic wet and dry	Contorete-Surfaces subject to water contact, not within exposure class XC2
3 Corregion	induced by chlorides	C IF
XD1	Moderate humidity	Concrete surfaces exposed to airborne chlorides
XD2	Wet, rarely dry	Swimming pools Concrete components exposed to industrial waters containing objections
XD3	Cyclic wet and dry	Parts of bridges exposed to spray containing chiorides Pavements Car park slabs
4 Corrosion	Induced by chlorides from sea water	
XS1	Exposed to airborne sait but not in direct contact with sea water	Structures near to or on the coast
X52	Permanently submerged (07/0)	Parts of marine structures
X83	Tidal, splash and spray zones 200	Parts of marine structures
5. Freeze/Th	aw Attack	
XP1	Moderate water saturation, Without de-Icing agent	Vertical concrete surfaces exposed to rain and freezing
XF2	Moderate water saturation, with de-iding agent	Vertical concrete surfaces of road structures exposed to meeting and arborne de long agents
XP3	High water saturation, without de-long agents	Horizontal concrete surfaces exposed to rain and freezing
XF4	High water saturation with de-loing agents or sea water	Road and bridge decks exposed to de-icing agents Concrete surfisions exposed to direct spray containing de-icing agents and freezing Splash zone of marine structures exposed to freezing
Chemical	attack	
XA1	Slightly appressive chemical environment according to EN 205-1. Table 2	Natural solis and ground water
XA2 (Moderately aggressive chemical environment according to EN 205-1, Table 2	Natural solis and ground water
XA3	Highly aggressive chemical environment	Natural solis and ground water

Table 4.4N: Values of minimum cover, *c*_{min,dur}, requirements with regard to durability for reinforcement steel in accordance with EN 10080.

Environm	al Require	ement fo	r c _{min.dur} (mm)				$\mathbf{\nabla}$	
Structural	rposu	re Class	according to	Table 4.1					
Class		XC1	XC2/XC3	XC4	×	(D1 / XS1	XD2 / XS2	XD37XS	3
S1	10	10	10	15		20	25 (/ />	<u>,</u>	
S2	10		15	20		25	30 (35	
S3	10	10	20	25		30	35	40	
S4	10	15	25	30		35 <	(40)	45	
S5	15	20		35		40	45	50	
S6	20	25	35	40		45 /	50	55	
							1.0		_

Table 4.5N: Values of minimum cover, c_{min,dur}, requirements with regard to durability for prestressing steel

Environmenta	nvironmental Requirement for c _{min,dur} (mm)											
Structural	Exposure	Class a	ecording to T	able 4.1								
Class	X0	XC1	XC2/XC3	XC4	XD1/X	XD2/XS2	XD3/XS3					
S1	10	15	20	25	30	35	40					
S2	10	15	25	30	35	1	45					
S3	10	20	30	/35	40	45	50					
S4	10	25	35	40	45	50	55					
S5	15	30	40	45	50	55	60					
S6	20	35	45	50	2) 55	60						

(6) The concrete cover should be increased by the additive safety element $\Delta c_{dur, y}$.

Note: The value of $\Delta c_{dur,y}$ for use in a Country may be found in its National Annex. The recommended value is 0 mm.

(7) Where stainless steel is used or where other special measures have been taken, the minimum cover may be reduced by $\Delta c_{dur,st}$. For such situations the effects on all relevant

												
					EXPU	SURE CL	ASSES					
	No	Ca	rbonatio	on induc	ed.		Chlor	ide indu	ced cori	osion		
	risk		corro	osion		S	ea wate	r	Chlor	ide othe	er tan	
									fror	n sea w	ater	
	X0	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	
a/c	-	0.65	0.60	0.55	0.50	0.50	0.45	0.45	0.55	0.55	0.45	
strength	C12/	C20/	C25/	C30/	C30/	C30/	C35/	C35/	C30/	C30/	C35/	
	15	25	30	37	37	37	45	45	37	37	45	
cement	-	260	280	280	300	300	320	340	300	320	340	
Cover	10	15	25	25	30	35	40	45	35	40	45	
depth												
S4(mm)												

THE STRUCTURAL CLASSES ARE SUBSTITUTED BY THE EXPOSURE RESISTANCE CLASSES (ERC)

COVER DEPTHS IN FUNCTION OF ERC's minimum cover Depth carbonation

prEN 1992-1-1:2020 (E)

Table 0	(NDI) -	(NDT) Minimum concrete cover c _{min,dur} for carbon steel Carbonation							
	Exposure class (carbonation)								
FR C	X	C 1	XC2		XC3		X	4	
EKC	Design service life (years)								
	50	100	50	100	50	100	50	100	
XRC 0,5	10	10	10	10	10	10	10	10	
XRC 1	10	10	10	10	10	15	10	15	
XRC 2	10	15	10	15	15	25	15	25	
XRC 3	10	15	15	20	20	30	20	30	
XRC 4	10	20	15	25	25	35	25	40	
XRC 5	15	25	20	30	25	45	30	45	
XRC 6	15	25	25	35	35	55	40	55	
XRC 7	15	30	25	40	40	60	45	60	

able (NDP) — Minimum concrete cover c for carbon steel — Carbonation

NOTE 1 The defignation of XRC classes for resistance against corrosion induced by carbonation is derived from the carbonation depth [mm] (characteristic value 90 % fractile) assumed to be obtained after 50 years under reference conditions (400 ppm CO₂ in a constant 65 %-*RH* environment and at 20 °C). XRC has the dimension of a carbonation rate [mm/ $\sqrt{$ (years)].

NOTE 2 The recommended minimum concrete cover values $c_{min,dur}$ assume execution and curing according to EN 13670 with at least Execution Class 2 and Curing Class 2.

NOTE 3 The minimum covers can be increased by an additional safety element $\Delta c_{dur,\gamma}$ considering special requirements (e.g. more extreme environmental conditions).

chlorides

Table 6.4(NDP) - Minimum concrete cover cmin.dur for carbon steel - Chlorides

					Expos	ure cla	ss (chlo	orides)				
TRC	x	S1	X	S2	X	\$3	X	01	XI	D2	XI	03
ERU		Design service life (y				ears) Design s		1 servi	ce life (years)		
	50	100	50	100	50	100	50	100	50	100	50	100
XRDS 0,5	20	20	20	30	30	40	20	20	20	30	30	40
XRDS 1	20	25	25	35	35	45	20	25	25	35	35	45
XRDS 1,5	25	30	30	40	40	50	25	30	30	40	40	50
XRDS 2	25	30	35	45	45	55	25	30	35	45	45	55
XRDS 3	30	35	40	50	55	65	30	35	40	50	55	65
XRDS 4	30	40	50	60	60	80	30	40	50	60	60	80
XRDS 5	5	45	60	70	70	_	35	45	60	70	70	_
XRDS 6	10	50	65	80	_	_	40	50	65	80	_	_
XRDS 8	15	55	75	—	_	_	45	55	75	—	_	_
XRDS 10	50	65	80	_	_	_	50	65	80	_	_	_

the the depth of XRDS classes for resistance against corrosion induced by chloride ingress is derived from the depth of chlorides penetration [mm] (characteristic value 90 % fractile), corres-ponding to a reference chlorides concentration (0,6 % by mass of bindercement + type II additions), assumed to be obtained after 50 years on a concrete exposed to one-sided penetration of reference seawater (30 g/l NaCl) at 20 °C. XRDS has the dimension of a diffusion coefficient [10⁻¹³ m²/s].

NOTE 2 The recommended minimum concrete cover values $c_{\min,dur}$ assume execution and curing according to EN 13670 with at least Execution Class 2 and Curing Class 2.

NOTE 3 The minimum covers can be increased by an additional safety element $\Delta c_{dur,\gamma}$ considering special requirements (e. g. more extreme environmental conditions).

(2) For temporary structures or for structures with a design service life of 30 years or less, $c_{min,dur}$ for a design service life of 50 years according to Table 6.3(NDP) and Table 6.4(NDP) may be reduced by $-\Delta c_{min,30}$.

NOTE 3 The reduction of the cover is $-\Delta c_{\min,30} \le 5$ mm unless a National Annex gives a different value.

STAINLESS STEEL

Q.4 Minimum cover for durability

(1) For durability design with stainless steel reinforcement, Stainless Steel Resistance Classes SSRC are defined in Table Q.2.

NOTE For an alternative approach to design cover for durability without use of Exposure Resistance Classes (ERC) see Annex P.

Stainless	Pitting		Informati	ve example	s EN 10088-1			
steel Resistance Class	Resistance Equivalent PREª	Description	Ferritic	Duplex	Austenitic			
SSRC0	0 to 9	Carbon steel reinforcement	-	-	-			
SSRC1	10 to 16	Chromium steels	1.4003	-	-			
SSRC2	17 to 22	Chromium Nickel steels	-	1.4482	1.4301 1.4307			
SSRC3	23 to 30	Chromium Nickel steels with Molybdenum	-	1.4362	1.4401 1.4404 1.4571			
SSRC4	≥ 31	Steels with increased content of Chromium and Molybdenum	-	1.4462	1.4529			
^a Calculation of the Pitting Resistance Equivalent: PRE = Cr + 3,3 · Mo + n · N; Cr, Mo and N in M %. With: n = 0 for ferritic steels, n = 16 for Duplex steels and n = 30 for austenitic steels.								

Table Q.2. Classification of corrosion resistance of stainless steel dependent on the Pitting Resistance Eqvivalent PRE

Table Q.3(NDP) - Minimum concrete cover cmin,dur to stainless steel reinforcement

Evposure	Exposure	9	Stainless steel r	esistance class	a
Class	resistance class ERC	SSRC1	SSRC2	SSRC3	SSRC4
XC1	< VDC0	0	0	0	0
XC2	$\leq \Lambda RC9$	0	0	0	0
Noo	\leq XRC5	0	0	0	0
XC3	\leq XRC9	15	0	0	0
NOA	\leq XRC5	15	0	0	0
XC4	\leq XRC9	20	0	0	0
	\leq XRDS1,5	20	15	0	0
XD1, XS1	\leq XRDS3,5	30	20	15	0
	\leq XRDS5,5	35	25	20	0
	\leq XRDS1,5	35	25	20	0
XD2, XD3, XS2, XS3	\leq XRDS3,5	45	35	25	15
102,100	\leq XRDS5,5	55	45	35	25

NOTE 1 The tabular d cover values apply or a design service life of 50 years unless a National Annex excludes some classes or gives of some laboration of the source of th

NOTE 2 For a design service life of 100 years cmin,dur in Table Q.3(NDP) should be increased by +10 mm for all ERC classes unless a National Annex excludes some classes or gives other values.

NOTE 3 In case of combined action of carbonation and chloride induced corrosion, cmmAur in Table Q.3(NDP) should be increased by 20 mm or a higher stainless steel resistance class should be chosen unless a National Annex gives other values.

For stainless steel corrosion resistance classes see Table Q.2.

THREE (INDEPENDENT) ROUTES FOR VERIFICATION OF DURABILITY (to use the cover depths)

DEFINITION of ERC EN-206-100

- NOTE 1: The designation of classes for resistance against corrosion induced by <u>carbonation (XRC)</u> is derived from the carbonation depth in mm (characteristic value 90 % fractile) assumed to be obtained after 50 years under reference conditions (400 ppm CO2 in a constant 65 % RH environment and at 20°C). XRC has the dimension of a carbonation rate (mm / sqrt(years)).
- NOTE 2: The designation of classes for resistance against corrosion induced by chloride ingress (XRDS) is derived from the depth of chlorides penetration in mm (characteristic value 90 % fractile), corresponding to a reference chlorides concentration (0.6 % by mass of cement + type II additions), assumed to be obtained after 50 years on a concrete exposed to one-sided penetration of reference seawater (30 g/l NaCl) at 20°C. XRDS has the dimension of a diffusion coefficient (10-13 m²/s).

prEN 1992-1-1:2020 (E)

Company and Company

()	$(MDT) = Minimum concrete cover c_{min,dur} for carbon steel = carbonation$								
Exposure class (carbonation)									
XC1		XC2		XC3		X	24		
Design service life (years)									
50	100	50	100	50	100	50	100		
10	10	10	10	10	10	10	10		
10	10	10	10	10	15	10	15		
10	15	10	15	15	25	15	25		
10	15	15	20	20	30	20	30		
10	20	15	25	25	35	25	40		
15	25	20	30	25	45	30	45		
15	25	25	35	35	55	40	55		
15	30	25	40	40	60	45	60		
	50 10 10 10 10 10 15 15 15	XC1 50 100 10 10 10 10 10 15 10 20 15 25 15 25 15 30	KC1 Expension XC1 XC De De 50 100 50 10 10 10 10 10 10 10 15 10 10 20 15 15 25 20 15 30 25	Solution Solution	Exposure class (carbonal XC1 XC2 X0 Design service life (yea 50 100 50 100 50 10 10 10 10 10 10 10 10 10 10 10 15 15 20 20 10 25 25 25 15 15 25 20 30 25 15 30 25 40 40	Solution Exposure class (carbonation) XC1 XC2 XC3 Design service life (years) 50 100 50 100 50 100 10 10 10 10 10 10 10 10 10 10 10 10 15 15 25 10 15 15 20 20 30 30 25 45 15 25 25 35 35 55 15 30 25 40 40 60	Exposure class (carbonation) XC1 XC2 XC3 X0 Design service life (years) 50 100 50 100 50 100 50 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 15 10 15 25 15 10 15 15 25 15 10 15 25 25 35 25 10 25 20 30 25 40 15 25 25 35 35 40 15 30 25 40 40 60 45		

NOTE 1 The defiguation of XRC classes for resistance against corrosion induced by carbonation is derived from the carbonation depth [mm] (characteristic value 90 % fractile) assumed to be obtained after 50 years under reference conditions (400 ppm CO₂ in a constant 65 %-*RH* environment and at 20 °C). XRC has the dimension of a carbonation rate [mm/ $\sqrt{}$ (years)].

NOTE 2 The recommended minimum concrete cover values $c_{min,dur}$ assume execution and curing according to EN 13670 with at least Execution Class 2 and Curing Class 2.

NOTE 3 The minimum covers can be increased by an additional safety element $\Delta c_{dur,\gamma}$ considering special requirements (e.g. more extreme environmental conditions).

VERIFICATION BY TESTING STARTING FROM THE ITT the mean value is extrapolated to fulfil the cover depth (90%)

• From reference conditions to each XC

The test will be in standard conditions

VERIFICATION BY COMPOSITION with annex F of EN 206

	/ / /				EXPO	SURE CL	ASSES				
/	No	Ca	rbonatio	on induc	ed		Chlor	ide indu	ced corr	rosion	
	risk		corro	osion		S	ea wate	r	Chlor	ide othe	er tan
									fror	n sea wa	ater
	X0	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3
a/c	-	0.65	0.60	0.55	0.50	0.50	0.45	0.45	0.55	0.55	0.45
strength	C12/	C20/	C25/	C30/	C30/	C30/	C35/	C35/	C30/	C30/	C35/
	15	25	30	37	37	37	45	45	37	37	45
cement	-	260	280	280	300	300	320	340	300	320	340
Cover	10	15	25	25	30	35	40	45	35	40	45
depth											
S4(mm)											

(Annex P of EC2)

	Variant 1: New design	Variant 2: Current design					
Design step	concept with ERC	concept without EBC					
Exposure classes XC, XD, XS, XF, XA, XM	6.3 Environmental exposure co	onditions					
related to environmental conditions							
Exposure registeres classes VCP VPDS VPE	6.3.3, Table 6.1 : Exposure classes X						
related to concrete resistance against corrosion	Classes (FRC)	-					
or abrasion attacks	0.00000 (2.1.0)						
Minimum concrete strength	Depending on new concrete	Depending on current					
	mixes in EN 206 or NAD,	concrete mixes in EN 206 or					
	new Annex F	NAD, Annex F;					
		P.3 Indicative strength classes					
		for durability					
Minimum cover cmin	6.5.2.1 General:						
	$C_{min} = max \{C_{min,dur} - \Delta C_{dur,red} +$	∆Cdur,abr; Cmin,b; 10 mm}					
Minimum cover cmin,dur for durability	Cmin,dur depending on :	Cmin,dur depending on :					
	YC YD YS and	YC XD XS and					
	XO, XD, XO and	XO, XD, XO and					
	 Exposure 	 Structural class 					
	Resistance	S and					
	VRDS and	- design service life					
	Xi too and	50 y or 100 y					
	 design service 						
	life 50 y or 100 y						
	6.5.2.2 Minimum cover for	P.2 Minimum cover for					
	durability - carbon and	durabilty - carbon, stainless					
	prestressing steel	and prestressing steel					
	O 2 Minimum cover for						
	durability – stainless steel						
Minimum cover cmin,b for bond	6.5.2.3 Minimum cover for bon	d					
Allowance in design for deviation Acdev	6.5.3 Allowance in design for o	deviation, Table 6.7(NDP)					
Nominal cover cnom	6.5.1 Nominal cover: Cnom = Cm						
Description of concrete durability (examples):	XRF XA2 XM1	C35/45, XC4, XD3, XF2, XA2, XM1					
	AN, AGE, ANT	X					
	_{Cmin} = 50 mm	c _{min} = 50 mm					
	c = 60 mm	c = 60 mm					
Minimum cover c _{min.b} for bond Allowance in design for deviation <u>Actev</u> Nominal cover c _{om} Description of concrete durability (examples):	design service life 50 y or 100 y 6.5.2.2 Minimum cover for durability – carbon and prestressing steel 0.2 Minimum cover for durability – stainless steel 6.5.2.3 Minimum cover for bor 6.5.3 Allowance in design for 0 6.5.1 Nominal cover: Cem = Cm C3/45, XRC2, XRDS4, XRF, XA2, XM1 Cmm = 50 mm Cnom = 60 mm	50 y or 100 y P.2 Minimum cover for durability – carbon, stainless and prestressing steel deviation, Table 6.7(NDP) in + Actev C35/45, XC4, XD3, XF2, XA2, XM1 omin = 50 mm comm = 60 mm					

ANNEX I Assessment Existing Structures

Limited to non deteriorated with

some comments on deteriorated

structures

Assessment of Existing Structures

I.1 Use of this annex

(1) This informative annex supplements provisions in this Eurocode for the assessment of existing structures in plain, reinforced and prestressed concrete. <u>Annex I</u> covers also the assessment of the retained parts of existing concrete structures, that are being modified, extended, strengthened or retrofitted, in case of projects where new structural members are to be combined with retained parts of existing concrete structures.

I.2 Scope and field of application

- (2) This informative annex covers:
- additional rules for materials and system not defined in Clause 5 (e.g. plain bars);
- additional rules for assessing existing structures where detailing does not comply
- with the provisions in Clauses 11 and 12;
- additional rules for anchorage of plain bars;
- considerations for deterioration of existing structures.

I.3 General

NOTE Unless noted otherwise, in Annex I all section/sub-section numbers and titles are similar as the relevant of the main part of this Eurocode. The prefix 'I is added to clauses numbers to distinguish content that pertain to assessment of existing concrete structures. Annex I contains only sections/subsections of the main part of this Eurocode that include specific clauses for the assessment of existing concrete structures.

 All clauses of this Eurocode are generally applicable to the assessment of existing concrete structures, unless substituted by the provisions given in Annex I.

(2) Annex I does not provide predictive methods for estimating deterioration rates associated with the various deterioration mechanisms for concrete structures. These should be undertaken using methods specified by the relevant authority or, where not specified, as agreed for a specific assessment by the relevant parties.

(3) Design values determined in accordance with this Eurocode may be interpreted as assessment values for the purpose of Annex I.

- (4) The following assumptions apply for the assessment of existing concrete structures:
- Reasonable skill and care appropriate to the circumstances is exercised in the assessment, based on the knowledge and good practice generally available at the time the structure is assessed.
- The assessment of the structure is made by appropriately qualified and experienced personnel.

NEW LIMIT STATE (the same in MC2020)

The reason is that in practice the depassivation onset CANNOT BE VERIFIED unless permanente sensors are used CEN does not accept requirements that are not verifiable

END OF SERVICE LIFE

Corrosion propagation is part of the service life until a corrosion depth of 50 μ m (general corrosion) or 500 μ m (localized corrosion with a probability of failure of 7-8% (β = 1.5)

BACKGROUND DOCUMENT EXPLAINING THE CALCULATION OF THE NEW LS AND THE COVER DEPTHS

Background Document for prEN1992-1-1:2020 D7 clause 6 - Durability

List of content, updated 2021-03-04

Only main sections listed

(The author/-s of each section and the current TG10 doc N are indicated in parentheses.)

- 1 Introduction
- 1.1 Scope (FT, N335)
- 1.2 Definitions (FT, N335)
- 1.3 Process scheme for performance-based specification (SGD, N329)
- 2 Models for carbonation induced corrosion XRC
 - 2.1 Full probabilistic approach I (SGD, N332)
 - 2.2 Full probabilistic approach II (DIL/CA, N336)
 - 2.3 Deterministic approach using margins and characteristic values (FT, N318b)
 - 2.4 Simplified calculations and comparisons (CVN, N337)
 - 2.5 Comparisons of XRC models (SGD, FT, CVN, N333)
 - 2.6 Covers for XRC (SGD, FT, CA, N333)
- 3 Models for chloride induced corrosion XRDS
- 3.1 Full probabilistic approach I (SGD, N325)
- 3.2 Full probabilistic approach II (DIL/CA, N338)
- 3.3 Deterministic approach using margins and characteristic values (FT, N318c)
- 3.4 Simplified calculations (CVN, N339)
- 3.5 Comparisons of XRDS models (SGD, FT, CVN, CA, DIL, N334)
- 3.6 Covers for XRDS (SGD, FT, CVN, CA, DIL, N334)
- 4 Covers to prestressing steel, to stainless steel and to soil

4.1 Prestressing steel (MH, CA, FT, SGD, N340)

4.2 Stainless steel (FH, N3XX (N309 updated))

4.3 Soil (CE, pending)

4.4 Cover to bored piles and diaphragm walls (FF, N298)

5 Allowance in design for deviation (FF, N317)

Limit state definition

$$t_L = t_i + t_p$$

- t_L = 50 yrs for tables
- t_p = Propagation time required to achieve 50µm / 500µm under exposure

 $t_{dep} = \left(\frac{C - \Delta x}{T}\right)^{1-n}$

- t_i = Required initiation time
- Modelling:

$$\begin{split} \mathbf{X}_{c} &= \sqrt{2 \cdot \mathbf{k}_{e} \cdot \mathbf{k}_{c} \cdot \frac{\mathbf{D}_{Co2}}{a}} \left(\frac{\mathbf{t}_{0}}{\mathbf{t}}\right)^{\mathrm{W}} = \sqrt{\frac{2 \cdot \mathbf{k}_{e} \cdot \mathbf{k}_{c}}{\mathbf{R}_{carb}}} \left(\frac{\mathbf{t}_{0}}{\mathbf{t}}\right)^{\mathrm{W}} \\ \mathbf{X}_{c} &= \mathbf{V}_{CO2} \cdot \mathbf{t}^{-2} \\ \mathbf{X}_{c} &= \mathbf{V}_{CO2} \cdot \mathbf{t}^{-2} \\ \mathbf{V}_{co2} &= \sqrt{\frac{2 \cdot \mathbf{k}_{e} \cdot \mathbf{k}_{c}}{\mathbf{R}_{carb}}} \left(\mathbf{t}_{0}\right)^{\mathrm{W}} \\ \mathbf{V}_{desp} &= \left(\frac{c}{\mathbf{V}_{CO2}}\right)^{\frac{2}{(1-2w)}} \end{split}$$

$$Conc(x,t) := \mathbf{C_0} + (\mathbf{C_s} - \mathbf{C_0}) \cdot \left(1 - \operatorname{erf}\left(\frac{x - \Delta x}{2 \cdot \sqrt{D_{app}(t) \cdot t}}\right)\right) \qquad D_{app}(t) = D(t_0) \cdot \left(\frac{t_0}{t}\right)^n$$
$$V(t) = \operatorname{erf}^{-1}(1 - \xi) \left[2 \sqrt{D(t_0) \cdot (t_0)^n}\right] \qquad \xi = \frac{\mathbf{C_{cr}} - \mathbf{C_0}}{\mathbf{C_s} - \mathbf{C_0}}$$

Autocalibration procedure (β_t)

Autocalibration procedure (Sensitivity factors) α_i

Note: $\alpha > 0$ "resistance" Variable $\alpha < 0$ "action" Variable

Service life propagation time uncoupling

 $V_{corr_d} = \mu_{Vcorr} - \begin{pmatrix} 0.70\\ 0.30 \end{pmatrix} \cdot \beta \cdot CoV$

Expossure	V _{corr} [μm/y]	CoV (%)	V _{corr,D} β=1,5	Tpr[yr] β=1,5	t _{ini,D} β=1,5
XC1	1	65	2.0	25	25
XC2	4	65	5.4	9	41
XC3	2	65	4.0	13	37
XC4	5	90	12.9	4	46
XS1	30	60	56.3	1	49
XS2	10	60	13.1	4	46
XS3	70	90	105.0	0	50

Only some exposure cases merit a calculation of propagation time t_{p} , in other cases propagation time is negligible.

Cover calculation for tables

Calculated values for XC3 & XC4 are provided for RH =

Carbonation

Relation average carbonation rate and 90% fractile is computed using following eq.

Chlorides

- Cover calculation for tables
 - Chloride induced corrosion

With current proposal, durable concrete should not be achieved using CEMI cement in XS/XD2 & XS/XD3

- Minimum cover provided tables
 - Provided as NDP
 - Calibrated for 50 and 100 yrs, including 50μm/ 500μm rebar corrosion
 - Calibrated for HR = 75% (XC3/XC4), values for Mediterranean Countries may differ
 - a priori deviations for the 90% fractile calculations
 - Additional allowance for different construction tolerances (NDP)

Thank you for your attention

M.^a Carmen Andrade

David Izquierdo

