Strengthening concrete structures with FRP laminates

Eva Oller¹, Ana de Diego², Lluís Torres³, Pedro Madera⁴

¹ Universitat Politècnica de Catalunya

² Instituto de Ciencias de la Construcción Eduardo Torroja (IETCC), CSIC

³ Universitat de Girona

⁴ MAPEI

Design of concrete 2nd generation of Eurocode 2 on concrete structures

Madrid, October 17th, 2023

DScimenti USSS rgado de www.e-ache.com el 04/09/202

EN 1992

Contents

- 1. Introduction
- 2. Basis of design, materials and structural analysis
- 3. Ultimate Limit States (ULS)
- 4. Serviceability Limit States (SLS)
- 5. Bond and anchorage for adhesively bonded CFRP systems
- 6. Conclusions

FIBRE REINFORCED POLYMER (FRP): Composite material formed by a polymeric matrix (resin) reinforced with continuous fibres

Fibres: G (glass), C (carbon), B (basalt), A (aramid) Matrix: Thermosetting; Thermoplastic GFRP CFRP BFRP AFRP

STRENGTHENING STRUCTURES with FIBRE REINFORCED POLYMER (FRP) LAMINATES

to restore or increase their load bearing capacity

FRPs introduced in **construction sector** to overcome the drawbacks of steel bonded plates (corrosion and weight)

STRENGTHENING STRUCTURES by ADHESIVELY BONDED REINFORCEMENT (ABR) with CARBON FIBRE REINFORCED POLYMER (CFRP) LAMINATES

Included in ANNEX J (informative) of EUROCODE 2

2 possible CONFIGURATIONS

Externally bonded reinforcement (EBR)

Near surface mounted (NSM) reinforcement

STRENGTHENING STRUCTURES by ADHESIVELY BONDED REINFORCEMENT (ABR) with CARBON FIBRE REINFORCED POLYMER (CFRP) LAMINATES

NOT Included in ANNEX J (informative) of EUROCODE 2

Textile Reinforced Mortar (TRM)

Prestressed adhesively bonded reinforcement

STRENGTHENING STRUCTURES by ADHESIVELY BONDED REINFORCEMENT (ABR) with CARBON FIBRE REINFORCED POLYMER (CFRP) LAMINATES

DAfStb (2013)

TR-55 (2012)

➢ AFGC (2011)

SIA (2004)

GRECO (2013)

 \geq

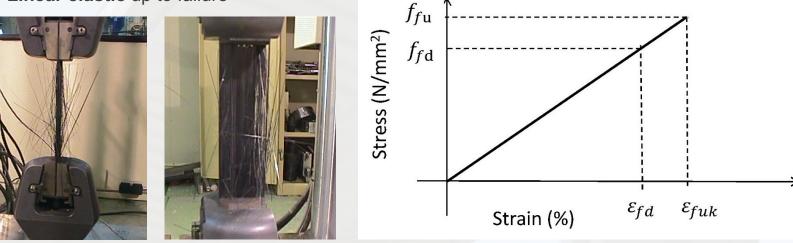
CNR-DT 200 R1/2013 (2013)

 \geq

Existing European guidelines

Externally applied FRP reinforcement for concrete structures

Technical report

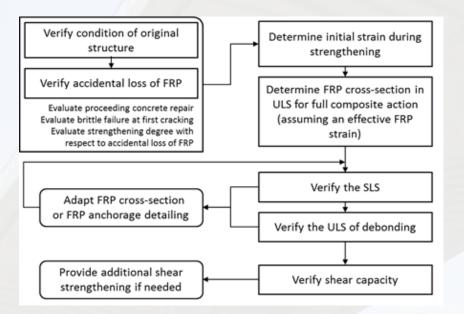

Additional background to Annex J

. .

2. BASIS OF DESIGN, MATERIALS AND STRUCTURAL ANALYSIS

• Linear elastic up to failure

Design situation	Tensile strength		Bond strength
	CFRP strips and bars	In-situ lay-up CF	Failure in concrete
		sheets	or adhesive
Designation	γ _f		ŶBA
Persistent and	1.30	1.40	1.50
transient			
Accidental	1.10	1.15	1.15
Serviceability	1.00	1.00	1.00
Fatigue	1.30	1.40	1.50


 $f_{fd} = \frac{\eta_f \cdot f_{fuk}}{\gamma_f}$

 η_f Reduction factor for relevant exposure conditions

Members strengthened with ABR should not be analysed using linear elastic analysis with limited redistribution or plastic analysis

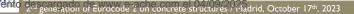
Bending with or without axial forces

Design of flexural strengthening system by applying equilibrium + compatibility

CHECK FRP DEBONDING!!!

Confinement

FRPs apply an ever-increasing confinement pressure to the concrete core.


Ultimate capacity is governed by tensile failure of FRP (lower than standard tensile testing of FRP coupons).

based on Lam and Teng (2003)

For circular columns:

For rectangular columns:

$$\Delta f_{cd} = 0 \qquad \qquad \text{for } \frac{t_f \cdot f_{fud}}{D \cdot f_{cd}} < 0.07 \qquad \Delta f_{cd} = 0 \qquad \qquad \text{for } \left(\frac{b}{h}\right)^2 k_e \frac{t_f \cdot k_r \cdot f_{fud}}{D_{eq} \cdot f_{cd}} < 0.07$$
$$\Delta f_{cd} = k_{cc} \cdot \left(\frac{b}{h}\right)^2 \cdot k_e \cdot \frac{t_f}{D_{eq}} \cdot k_r \cdot f_{fud} \qquad \qquad \text{for } \left(\frac{b}{h}\right)^2 k_e \frac{t_f \cdot k_r \cdot f_{fud}}{D \cdot f_{cd}} \ge 0.07$$

Confinement

FRPs apply an ever-increasing confinement pressure to the concrete core.

Ultimate capacity is governed by tensile failure of FRP (lower than standard tensile testing of FRP coupons).

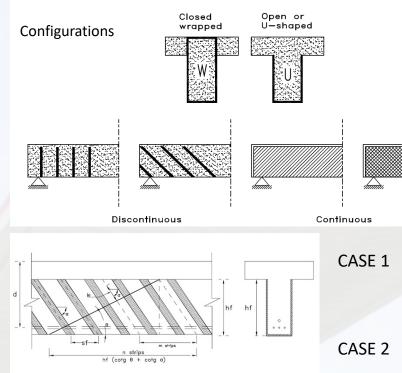
based on Lam and Teng (2003)

For circular columns:

For rectangular columns:

$$\Delta f_{cd} = 0 \qquad \qquad \text{for } \frac{t_f \cdot f_{fud}}{D \cdot f_{cd}} < 0.07 \qquad \Delta f_{cd} = 0 \qquad \qquad \text{for } \left(\frac{b}{h}\right)^2 k_e \frac{t_f \cdot k_r \cdot f_{fud}}{D_{eq} \cdot f_{cd}} < 0.07$$
$$\Delta f_{cd} = k_{cc} \cdot \frac{t_f}{D} \cdot f_{fud} \qquad \qquad \text{for } \frac{t_f \cdot f_{fud}}{D \cdot f_{cd}} \ge 0.07 \qquad \Delta f_{cd} = k_{cc} \cdot \left(\frac{b}{h}\right)^2 \cdot k_e \cdot \frac{t_f}{D_{eq}} \cdot k_r \cdot f_{fud} \qquad \qquad \text{for } \left(\frac{b}{h}\right)^2 k_e \frac{t_f \cdot k_r \cdot f_{fud}}{D \cdot f_{cd}} \ge 0.07$$

2nd generation of Eurocode 2 on concrete structures / madrid, October 17th, 2023


Shear

Problem: Debonding of FRP shear strengthening system

Shear

Unstrengthened structure

$$\tau_{Rd,CFRP} = \tau_{Rd} + \tau_{Rd,f} \le 0.5 \cdot v \cdot f_{cd}$$

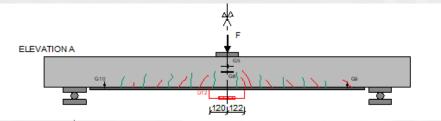
$$\tau_{Rd,f} = \frac{A_f}{s_f} \cdot \underbrace{f_{fwd}}_{b_w} \cdot (\cot \theta + \cot \alpha_f) \cdot \sin \alpha_f$$

$$(f_{fwd}) = ??? \quad \text{FRP does not yield}$$
W Closed system $f_{fwd} = 0.8 \cdot k_r \cdot f_{fud}$
U Open system

$$f_{fwd} = \frac{2}{3} \cdot \frac{n \cdot s_f}{l_{bf,max,k} \cdot [(\cot \theta + \cot \alpha_f) \cdot \sin \alpha_f]} \cdot f_{bfRd}$$

$$f_{fwd} = \left[1 - \left(1 - \frac{2}{3} \frac{m \cdot s_f}{l_{bf,max,k} \cdot [(\cot \theta + \cot \alpha_f) \cdot \sin \alpha_f]}\right) \frac{m}{n}\right] \cdot f_{bfRd}$$

4. SERVICEABILITY LIMIT STATES

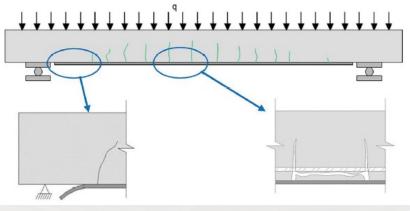

SLS (**control of deflections**) might govern the design of the strengthening system, even the main purpose was the strength increase.

Previous state of stresses and deflections should be considered in the verification of the SLS

Stress limitations due to compatibility reasons

Cracking:

 $\sigma_f \le 0.8 \cdot f_{yk} \cdot \frac{E_f}{E_c}$


Deflections: Strengthened element should fulfil the deflection limitations given by the main EC2. Limited studies on the long-term behaviours.

6. BOND AND ANCHORAGE OF ADHESIVELY BONDED CFRP SYSTEMS

Anchorage of EBR

Flexural strengthening

End debonding

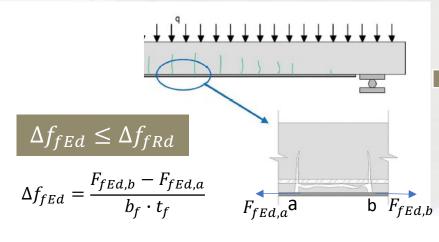
Intermediate crack debonding

End debonding

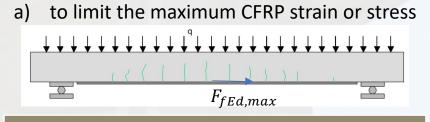
Effective bonded length $l_{bf,max}$: the minimum length that ensures the transfer of the maximum force or stress between the CFRP laminate and the concrete substrate.

- a) Refined method
- b) Simplified method

$$l_{bf,max,k} = 1.5 \sqrt{\frac{E_f \cdot t_f}{\left(f_{cm} \cdot f_{ctm,surf}\right)^{0.5}}}$$


EBR shall be anchored from the section where the existing structure is able to carry the design load forces without any additional strengthening system

6. BOND AND ANCHORAGE OF ADHESIVELY BONDED CFRP SYSTEMS


Anchorage of EBR

Flexural strengthening

$$\Delta f_{fRd} = \frac{1}{\gamma_{BA}} \cdot \left((\eta_{cc} \cdot k_{tc} \cdot k_{tt})^{0.5} \cdot \Delta f_{fk,B} + \Delta f_{fk,F} + \Delta f_{fk,C} \right)$$

Intermediate crack debonding

b) to limit the increment of the tensile forces for each pair of adjacent cracks

Annex J is based on Finck and Zilch (2012) model included in the German guideline DAfStb (2013)

CONCLUSIONS

Strengthening existing concrete structures with CFRP adhesively bonded systems has been incorporated for the first time in EC2 provisions in an informative annex (Annex J).

- Design provisions for strengthening existing reinforced or prestressed concrete structures in flexure, shear or confinement with passive EB or NSM CFRP reinforcements are given considering:
 - ✓ CFRP laminates are **linear elastic up** to failure.
 - Debonding is a premature failure that should be considered when strengthening in flexure and shear.

ACKNOWLEDGEMENTS

BIA2015-64672-C4-1-R, RTI2018-097314-B-C21, PID2020-119015GB-C22, PID2021-123701OB-C21.

Thank you for your attention

Eva Oller

