

INVITED CONFERENCE

Anchorage and laps of reinforcing steel

John Cairns

EUROCODES

EN 1992

Design
of concrete
structures

2nd generation of Eurocode 2 on concrete structures

Madrid, October 17th, 2023

FprEC2:2023 Sections 11.3 & 11.4

1. Some basics of bond behaviour
2. Calculation of anchorage length, straight bars in tension
3. Hooks, bends, U loops
4. Laps of bars in tension
5. Compression laps and anchorages
6. New content: Post-installed reinforcement, headed bars
7. Impact on design

Aims:

Describe change, explain rationale, quantify impact.

I.1 Some basics of bond behaviour

Splitting and pull-out modes

Shearing over
tops of
deformations
**Non-
ductile**

Bearing of
deformations,
splitting
Brittle

1.2 Some basics of bond behaviour

Variation in stress over bond length is non-linear

Pair of lapped bars, $\phi = 25\text{mm}$, $l_b = 50\phi$, $\sigma_{sd} = 400\text{MPa}$

Bar stresses

Bond stresses

(Plots based on linear elastic analysis
using MC local bond-slip relationship)

Principal sources

EC2:2004

Based on CEB-FIP
Model Code 1978,
(with some modifications)

Bulletin 72
technical report

Bond and anchorage of
embedded reinforcement:
Background to the *fib*
Model Code for Concrete
Structures 2010

FprEC2:2023

2014
Bulletin 72 Background

2013
MC2010 Sect. 6.1

INVITED CONFERENCE: Anchorage and laps of reinforcing steel

2.1 Calculation of anchorage lengths, straight bars

EC2:2004

$$f_{bd} = 2,25 \eta_1 \eta_2 f_{ctd}$$

$$l_{b,rqd} = (\phi / 4) (\sigma_{sd} / f_{bd})$$

$$l_{bd} = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 l_{b,rqd} \geq l_{b,min}$$

η_1, η_2 bar size, casting position

α : hook/bend, min. cover, transverse compression

Influencing parameters multiplicative

FprEC2:2023 : simplified provisions

Table 11.1 (NDP) — Anchorage length of straight bars divi

ϕ [mm]	Anchorage length l_{bd}/ϕ				
	f_{ck}				
	20	25	30	35	40
≤ 12	47	42	38	36	33
14	50	44	41	38	35
16	52	46	42	39	37
20	56	50	46	42	40
25	60	54	49	46	43

Simplified provision for ribbed bars $\phi \leq 32$ mm, indented bars $\phi \leq 14$ mm, $c_d \geq 1,5\phi$, $\sigma_{sd} = 435$ MPa, good bond conditions

2.2 Calculation of anchorage lengths, straight bars :detailed provisions

FprEC2:2023 : detailed provisions

$$l_{bd} = k_{lb} \cdot k_{cp} \cdot \phi \cdot \left(\frac{\sigma_{sd}}{435} \right)^{n_{\sigma}} \cdot \left(\frac{25}{f_{ck}} \right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20} \right)^{\frac{1}{3}} \cdot \left(\frac{1,5 \phi}{c_{d,conf}} \right)^{\frac{1}{2}} \geq 10\phi \quad (11.3)$$

$$c_d = \min\{0,5c_s; c_x; c_y; 3,75\phi\}$$

$$(\phi/20 \text{ mm}) \geq 0,6 \text{ and } (25/f_{ck}) \geq 0,3$$

$$c_{d,conf} = \min \left\{ c_x; c_y + 25 \frac{\phi_t^2}{s_t}; \frac{c_s}{2}; 3,75\phi \right\} + \Delta c_d \leq 6\phi \quad (11.4)$$

$$\Delta c_d = (70\rho_{conf} + 12\sigma_{ccd}/\sqrt{f_{ck}})\phi;$$

Where transverse compression or an appreciable quantity of secondary reinforcement restrain splitting failure

Confinement parameters summative

2.2a Bond length and elimination of ultimate bond strength

$$f_{stm} = 54 \left(\frac{f_{cm}}{25} \right)^{0.25} \left(\frac{l_b}{\phi} \right)^{0.55} \left(\frac{25}{\phi} \right)^{0.2} \left[\left(\frac{c_{min}}{\phi} \right)^{0.25} \left(\frac{c_{max}}{c_{min}} \right)^{0.1} + k_m K_{tr} \right] \quad \text{Eq 2}$$

Eq 2 mean anchorage strength expression, from fib Bulletin 72

Gradient of straight lines represents average bond stress

2.2b Influence of design strength of bar

$$l_{bd} = k_{lb} \cdot k_{cp} \cdot \phi \cdot \left(\frac{\sigma_{sd}}{435} \right)^{n_\sigma} \cdot \left(\frac{25}{f_{ck}} \right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20} \right)^{\frac{1}{3}} \cdot \left(\frac{1,5\phi}{c_d} \right)^{\frac{1}{2}} \geq 10\phi \quad (11.3)$$

$n_\sigma = 1.5$

*Non-linear
influence of
bond length*

$$f_{ck} = 30 \text{ MPa}$$
$$\phi = 20 \text{ mm}$$
$$c_d = 30 \text{ mm}$$

2.3 Influence of concrete strength

EC2:2004

$$f_{bd} = 2,25 \eta_1 \eta_2 f_{ctd}$$

Tensile strength of concrete

$$f_{ctd} = f_n(f_{ck})^{0.67}$$

=>

$$l_{bd}/\phi = f_n(f_{ck})^{0.67}$$

Valid only for short bond lengths

FprEC2:2023

$$l_{bd} = k_{lb} \cdot k_{cp} \cdot \phi \cdot \left(\frac{\sigma_{sd}}{435} \right)^{n_{\sigma}} \cdot \left(\frac{25}{f_{ck}} \right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20} \right)^{\frac{1}{3}} \cdot \left(\frac{1,5\phi}{c_d} \right)^{\frac{1}{2}} \geq 10\phi$$

Pair of lapped bars, $\phi = 25\text{mm}$, $l_b = 20\phi$, $\sigma_s = 400\text{MPa}$

2.4 Influence of bar size

EC2:2004

$\eta_2 = 1,0$ for $\phi \leq 32$ mm

$\eta_2 = (132 - \phi)/100$ for $\phi > 32$ mm

FprEC2:2023

$$l_{bd} = k_{lb} \cdot k_{cp} \cdot \phi \cdot \left(\frac{\sigma_{sd}}{435}\right)^{n_{\sigma}} \cdot \left(\frac{25}{f_{ck}}\right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20}\right)^{\frac{1}{3}} \cdot \left(\frac{1,5\phi}{c_d}\right)^{\frac{1}{2}} \geq 10\phi$$

$\phi/20 \geq 0.6$ based on test data and lower rib area required for bars < 12 mm:

Value of function for bar size

2.4 Influence of bar size

EC2:2004

$\eta_2 = 1,0$ for $\phi \leq 32$ mm

$\eta_2 = (132 - \phi)/100$ for $\phi > 32$ mm

FprEC2:2023

$$l_{bd} = k_{lb} \cdot k_{cp} \cdot \phi \cdot \left(\frac{\sigma_{sd}}{435}\right)^{n_\sigma} \cdot \left(\frac{25}{f_{ck}}\right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20}\right)^{\frac{1}{3}} \cdot \left(\frac{1,5\phi}{c_d}\right)^{\frac{1}{2}} \geq 10\phi$$

$\phi/20 \geq 0.6$ based on test data and lower rib area required for bars < 12 mm:

Influence on bond length, rebased to common datum (32mm)

2.5 Influence of transverse compression

EC2:2004

$$\alpha_5 = 1,0 - 0,04p$$
$$0,7 \leq \alpha_5 \leq 1,0$$

FprEC2:2023

$$\Delta c_d = (70 \rho_{\text{conf}} + 12 \sigma_{\text{ccd}} / \sqrt{f_{\text{ck}}}) \phi;$$

(FprEC2 relative bond length dependent on other contributions to confinement)

2.6 Casting position (bars < 45° to horizontal)

EC2:2004

Coefficient η_1 applied to bond strength:

$\eta_1 = 1.0$ and 0.7 for good and poor bond conditions respectively.

Equivalent to **43%** greater bond lengths for poor condition

FprEC2:2023

Coefficient k_{cp} applied to bond length:

$k_{cp} = 1.0$ for good bond conditions

$k_{cp} = 1.2$ for poor bond conditions

$k_{cp} = 1.4$ under bentonite or similar

2.6a Casting position

Top cast ratio = maximum stress anchored in bar cast near top of pour/ that in bar cast near the bottom

Wide range reported

2.6b Casting position

Analysis of distribution of bond stress through lap using MC2010 local bond-slip model

Over practical bond lengths, more uniform distribution of bond stress through a 'top cast' lap partially compensates for weaker bond strength in a 'poor' casting position

Contribution of end hooks and bends to tension anchorages

EC2:2004

Influencing factor	Type of anchorage	Reinforcement bar	
		In tension	In compression
Shape of bars	Straight	$\alpha_1 = 1,0$	
	Other than straight (see Figure 8.1 (b), (c) and (d))	$\alpha_1 = 0,7$ if $c_d > 3\phi$ otherwise $\alpha_1 = 1,0$ (see Figure 8.3 for values of c_d)	

30% reduction in anchorage length for hook or bend, provided $c_d/\phi > 3.0$

- Contribution of a bend increases with stress to be anchored
- No reduction in l_{bd} for $c_d \leq 3\phi$?

3b Contribution of end hooks and bends to tension anchorages

EC2:2004

Influencing factor	Type of anchorage	Reinforcement bar	
		In tension	I
Shape of bars	Straight	$\alpha_1 = 1,0$	
	Other than straight (see Figure 8.1 (b), (c) and (d))	$\alpha_1 = 0,7$ if $c_d > 3\phi$ otherwise $\alpha_1 = 1,0$ (see Figure 8.3 for values of c_d)	

30% reduction in anchorage length for hook
or bend, provided $c_d/\phi > 3.0$

FprEC2:2023

The design anchorage length may be reduced by:
15 ϕ for standard hooks and bends
20 ϕ for U-loops

4

Tension laps, straight bars

EC2:2004

Percentage of lapped bars relative to the total cross-section area	< 25%	33%	50%	>50%
α_6	1	1,15	1,4	1,5

Note: Intermediate values may be determined by interpolation.

$$l_0 = \alpha_1 \alpha_2 \alpha_3 \alpha_5 \alpha_6 l_{b,rqd} \geq l_{0,min}$$

Rules similar to anchorages but with factor α_6 dependent on percentage bars lapped at section

FprEC2:2023

$$k_{ls} = 1,2$$

Rules similar to anchorages but with factor $k_{ls} = 1,2$ (NDP) independent of percentage bars lapped at section

Clarification of bar spacing dimension for staggered laps

4.1 Tension laps, straight bars

1975: Hydraulic pressure analogy laps vs. anchorages

Laps produce double the splitting of anchorages

α_6 factor in EC2:2004 inconsistent with test results

Test evidence

Cairns 2014

Thompson Jirsa
Breen Meinheit
1975

INVITED CONFERENCE: Anchorage and laps of reinforcing steel

4.2 Tension laps, robustness

Support moment may be redistributed by 30% (subject to limit based on section ductility)

>50% strength loss immediately after peak load

Locate laps away from areas of high bar stress wherever possible

4.2a Tension laps, robustness

EC2:2004

No specific requirements

FprEC2:2023

Additional requirements for laps in vicinity of plastic hinges/yield lines :

- additional confining reinforcement provided
- area lapped $\leq 35\%$

Alternatively

- Design for $1,2 \sigma_{sd}$

Compression laps and anchorages

Strength of compression laps, all test results

FprEC2:2023

Expressions 11.3 and 11.4 as for bars in tension

Design anchorage length may be reduced by 15ϕ provided requirements for detailing of links near ends of laps are satisfied

5b Compression laps and anchorages

Weaker anchorage if no links near ends

Confining reinforcement to be located close to ends of compression laps

No allowance for bars ending near a face

6 New content

Bonded post-installed reinforcing steel

Broadly consistent with cast-in, but additional requirements on anchoring mortar, cover.

Additional restrictions on concrete grade, σ_{sd}

Headed bars

Head can provide full anchorage for Grade 500 bars if specified conditions of cover, spacing, head geometry, concrete strength are satisfied.

Detailed provisions for head capacity in other circumstances

Additional 10% on bond length where head and straight length of bar act in combination

7 Impact on design

FPrEC2:2023 provisions validated against extensive sets of data

Tension laps

Compression laps

7 Impact on design

Sample sections

Bar sizes 12 and 25 (c_d/ϕ 3.33 and 1.6)

Concrete strength f_{ck} 25MPa and 60MPa

Design for $\sigma_{sd} = 435$ MPa

Anchorage

$c_d = 40\text{mm}$

Lap

7.1 Impact on design

Evolution of bar strength

1978 : $f_{yk} \sim 400$ MPa

Say bond length corresponds to 40ϕ

7.1 Impact on design

1978 : $f_{yk} \sim 400 \text{ MPa}$

f_{yk} now $\sim 500 \text{ MPa}$

EC2:2004 provisions $\Rightarrow l_{bd} = 50 \phi$
a +25% increase

7.1 Impact on design

1978 : $f_{yk} \sim 400 \text{ MPa}$

f_{yk} increased to $\sim 500 \text{ MPa}$

EC2:2004 provisions $\Rightarrow l_{bd} = 50 \phi$
a +25% increase

But allowing for non-linear behaviour
 $\Rightarrow l_{bd} = 55.9\phi$
i.e. 12% greater increase

MC2020 indicates 20% increase

7.2a Impact on design

Anchorage, good casting position

Longer anchorage lengths for larger bars

- EC2 : design bond length according to EC2:2004, the current EuroCode
- EC2+20% : design bond length according to EC2:2004 with correction for steel strength
- FprEC2 : design bond length according to FprEC2:2023, the revised EC

7.2a Impact on design

Anchorage, good casting position

Longer anchorage lengths for larger bars

Anchorage, poor casting position

Little difference larger bars, shorter small bars

7.2b Impact on design

Hook/bent bar, good casting position

Shorter anchorage lengths

Anchorage subject to 1.0 MPa transverse compression, good casting position
Shorter anchorage lengths

7.2c Impact on design

Tension lap, good casting position, 100% lapped
Generally slightly shorter lap lengths

Compression lap, good casting position
Considerably shorter lap lengths

Summary

1. Extensive revision of section on anchorage and laps of reinforcing steel in FprEC2:2023
2. *fib* Bulletin 72 has formed the basis for many of the revised provisions
3. ‘Bond strength’ eliminated, non-linear variation in capacity with bond length recognized, hence bond lengths now calculated directly
4. Look-up table for routine situations, detailed expressions account for greater (or lesser) confinement from cover, transverse reinforcement or transverse pressure
5. Hooks/bends contribute an equivalent straight bond length, reduced influence of poor casting position, etc.
6. Compression laps/anchorage treated in a more consistent and rational manner
7. New content on PIR, headed bars, assessment
8. Typically modest increase in design anchorage lengths of larger size straight bars, reductions for bent/hooked bars or U-loops, bars in compression

Thank you for your attention

John Cairns

