

EUROCODES

EN 1992

Design
of concrete

Destructures gado de www.e-

2nd generation of Eurocode 2 on concrete structures

Madrid, October 17th, 2023

Contents

- 1. Objectives
- 2. Introduction
- 3. Basis of design and materials
- 4. Structural analysis Durability
- 5. Ultimate Limit States
- 6. Serviceability Limit States
- 7. Detailing of FRP reinforcement
- 8. Conclusions

1. OBJECTIVES

SUMMARY OF MAIN ASPECTS INTRODUCED IN (INFORMATIVE) ANNEX R OF EC2

- Includes a brief summary of the contens of the paper:
 - E. Oller, L. Torres, A. De Diego. Embedded Fibre Reinforced Polymer (FRP) Reinforcement in Concrete Structures According to the New Version of Eurocode 2. Hormigón y Acero 2023; 74 (299-300): 199-210. https://doi.org/10.33586/hya.2022.3098
 - All references supporting the contents can be found in the indicated paper.

2. INTRODUCTION

FIBRE REINFORCED POLYMER (FRP)

- Formed by a polymeric matrix (resin) reinforced with continuous fibres
- Fibres mostly provide the mech. props.: Glass (G), Carbon (C) Aramid (A), Basalt (B).
- Matrix acts as a binder, transfers shear stresses, provides integrity and protection:
 Vinylester, Polyester, Epoxi, ...

• Surface treatment for bond: sand coating, indentations, undulations, etc.

2. INTRODUCTION

APPLICATIONS

Some examples in which FRP may be an alternative

Corrosion in aggressive environments:

- Marine environments, Salts, Bridge decks
- Industrial facilities
- Sewage treatment, ...

2. INTRODUCTION **APPLICATIONS**

Medical/Research facilities

Electrical facilities

Cutability: Temporary appl.

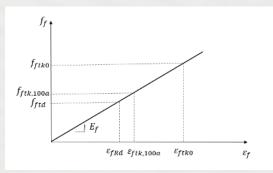
Thermal isolation

Electromagnetic fields

2. INTRODUCTION

SOME CODES, GUIDELINES

- ACI 440.11-22 GFRP (USA)
- CAN/CSA S806-12 R17 Buildings (CAN)
- CAN/CSA S6:19 (CAN) Highway bridges (CAN)
- CNR DT 203-2006 (IT)
- AFGC 2021 (FR)
- JSCE 1997 (**JP**)
- BRI-Building Research Institute 1997 (JP)
- fib Bulletin 40 2007
- fib MC 2010, fib MC 2020 (in progress)



 New EC 2 (Informative Annex R): covers bars or mesh of GFRP and CFRP; does not cover prestressing

3. BASIS OF DESIGN AND MATERIALS

Linear elastic behaviour up to failure

Design situation	γ_{FRP}
ULS (Persistent and	1,50
transient)	
Accidental	1,10
Serviceability	1,00

Based on reliability index β = 3.8, $ff_{tk,100a}$ and f_{ftk0} . Reduction can be applied if supplier can prove required reliability [20].

- Mechanical props. depend on fibre/volume fraction
- **Modulus of elasticity lower** than that of steel ($E_{fR} \ge 40000 \text{ MPa}$)
- **Strenght** can vary with the diameter $(\downarrow \text{ if } \varnothing \uparrow)$
- Design should be based on the nominal cross sectional area

3. BASIS OF DESIGN AND MATERIALS

- FRP materials experience creep rupture under sustained loading (reduction in f_{ttk0})
- The design tensile strength is defined from the long-term strength: $f_{ftd} = \frac{f_{ftk,100a}}{\gamma_{FRP}}$
- When not provided by the supplier, a formula based on conservative coefficients is proposed:

$$f_{ftk,100a} = C_t \cdot C_c \cdot C_e \cdot f_{ftk0}$$

C_t: Temperature effects (1,0 indoor; 0,8 outdoor)

C_c: Sustained vs. short-term load (0,35 GFRP; 0,8 CFRP)

C_e: Ageing effects (0,70)

See procedures in Background Document of EC2 [20]

It is seen that a **conservative value** might be obtained for f_{ftd} :

$$f_{ftd} = \frac{f_{ftk,100a}}{\gamma_{FRP}} = \frac{C_t \cdot C_c \cdot C_e \cdot f_{ftk0}}{\gamma_{FRP}} = \frac{0.8 \cdot 0.35 \cdot 0.7}{1.5} f_{ftk0} = 0.13 \cdot f_{ftk0}$$

4. STRUCTURAL ANALYSIS - DURABILITY (CONCRETE COVER)

STRUCTURAL ANALYSIS:

- Linear analysis with redistribution and plastic analysis are not allowed.
- Design by strut and tie models and stress fields is not covered.

CONCRETE COVER:

- The same phylosophie as for steel RC: $c_{nom}=c_{min}+\Delta c_{dev}$; $c_{min}=max\{c_{min,dur}+\sum\Delta c;c_{min,b};10~mm\}$
- For FRP, $c_{min.dur} = 0$
- In absence of more accurate information $c_{min,b} \ge 2\emptyset$, but at least $c_{min,b} \ge 1.5\phi$ and $c_{min,b} \ge 10$ mm.

5. ULTIMATE LIMIT STATES

BENDING

- Usual assumptions for calculation (equilibium, compatibility, material properties)
- Concrete crushing and FRP tensile failure are allowed

- Main differences: absence of yielding, large variety of products/properties
- Compression reinforcement is not considered for the resistance (high scatter in results, lack of reliability)

5. ULTIMATE LIMIT STATES

SHEAR

- Based on the same formulation as in the main text (CSCT), introducing some modifications
- Members w/o shear reinforcement: factor E_{fR}/E_s is introduced in eqs. for the shear stress resistance to consider the effect of **lower stiffness** of longitudinal reinforcement

$$\tau_{Rdc,min} = \frac{11}{\gamma_v} \sqrt{\frac{f_{ck}}{f_{ftk0}}} \underbrace{\frac{E_{fR}}{E_s}} \underbrace{\frac{d_{dg}}{d}} \qquad \qquad \tau_{Rd,c} = \frac{11}{\gamma_{ck}} \underbrace{\frac{f_{ck}}{f_{ftk0}}} \underbrace{\frac{E_{fR}}{E_s}} \underbrace{\frac{d_{dg}}{d}} = \frac{11}{\gamma_{ck}} \underbrace{\frac{f_{ck}}{f_{ftk0}}} \underbrace{\frac{E_{fR}}{f_{ftk0}}} \underbrace{\frac{d_{dg}}{d}} = \frac{11}{\gamma_{ck}} \underbrace{\frac{f_{ck}}{f_{ftk0}}} \underbrace{\frac{E_{fR}}{f_{ftk0}}} \underbrace{\frac{E_{fR}}$$

$$\tau_{Rd,c} = \frac{0.66}{\gamma_V} \cdot \left(100 \cdot \rho_{lf} \left(\frac{E_{fR}}{E_s}\right) f_{ck} \cdot \frac{d_{dg}}{d}\right)^{\frac{1}{3}} \ge \tau_{Rdc,min}$$

Members requiring shear reinforcement an additive equation includes concrete contribution

$$\tau_{Rd,f} = \tau_{Rd,c} + \rho_{w} \cdot f_{fwRd} \cdot \cot\theta \leq 0.17 \cdot f_{cd}$$

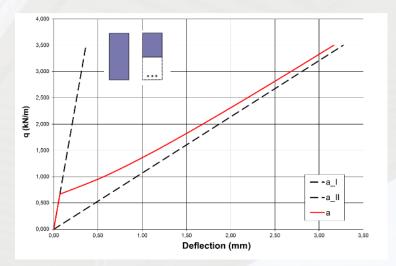
$$f_{fwRd} = f_{fwk,100a} / \gamma_{FRP} \leq \varepsilon_{fwRd} \cdot E_{fwR}$$

$$\varepsilon_{fwRd} = 0.0023 + 1/15 \cdot E_{fR} \cdot A_{fl} \cdot (0.8 \cdot d)^{2} \cdot 10^{-15} \leq 0.007$$

$$\cot\theta = 0.8$$

Use of additive approach leads to $\cot \theta = 0.8$ chosen for ease of use on the side of safety; FRP strain limited to avoid shear compression failure; capacity of struts modified with $\nu = 0.35$ due to larger deformations [20].

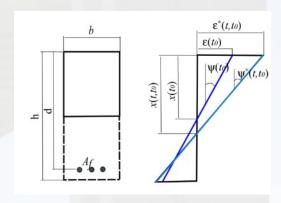
6. SERVICEABILITY LIMIT STATES


STRESS LIMITATION AND CRACK CONTROL

- The general equations in the main text apply (9.2.2, 9.2.3.), provided that FRP properties are used.
- Similar bond as steel reinforcement is assumed.
- Simplified procedures in Annex S do not apply.
- Annex R includes specific tables for stress and crack widht limits for FRP reinforcement, in which
 - Crack widhts are limited for appearance to $w_{lim,cal} = 0.4 \text{ mm}$ (implies no need for durability reasons)
 - In absence of appearance and other specific conditions this limit may be relaxed to 0.7 mm.

6. SERVICEABILITY LIMIT STATES

DEFLECTIONS


- **General equations** in 9.3.4 apply, both for short and long-term.
- Limits of *Lld* in 9.3.2 and simplified approach in 9.3.3 do not apply (calibrated for steel RC).

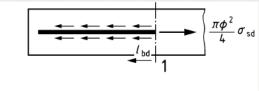
$$\alpha_{\delta} = (1 - \zeta)\alpha_{\rm I} + \zeta\alpha_{\rm II}$$

$$\alpha_{\delta} = (1 - \zeta)\alpha_{\rm I} + \zeta \alpha_{\rm II}$$

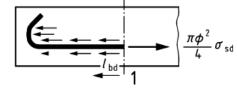
$$\zeta = 1 - \beta_{\rm t} \left(\frac{\sigma_{\rm SI}}{\sigma_{\rm s}}\right)^2 \ge 0$$

$$E_{\rm c,eff} = \frac{1.05 \cdot E_{\rm cm}}{1 + \varphi(t, t_0)} \qquad \left(\frac{1}{r}\right)_{\varepsilon_{\rm cs}} = \frac{E_{\rm s}}{E_{\rm c,eff}} \varepsilon_{\rm cs} \frac{S_{\rm s}}{I_{\rm g}}$$

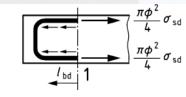
$$\left(\frac{1}{r}\right)_{\varepsilon_{\text{cs}}} = \frac{E_{\text{S}}}{E_{\text{c,eff}}} \varepsilon_{\text{cs}} \frac{S_{\text{s}}}{I_{\text{g}}}$$


7. DETAILING OF FRP REINFORCEMENT

GENERAL ASPECTS


- In general, the main text can be applied except for specific rules given in Annex R.
- Bending or rebending on site is usually not possible (for thermosetting bars). Thermosetting bars must be manufactured with final requited configurations. Lap splices are allowed.

ANCHORAGE


Only methods in Fig. 11.2 a), b), c) of the main text may be used for FRP reinforcement

Anchorage of straight bars 11.4.2

Anchorage of bends and hooks 11.4.4

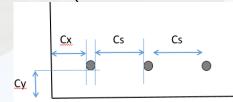
U-bar loops 11.4.6

7. DETAILING OF FRP REINFORCEMENT

ANCHORAGE

• The anchorage length is given by the eq. in the main text with some modifications related to η_{σ} , c_d and minimum values

$$l_{bd} = k_{lb} \cdot k_{cp} \cdot \phi \cdot \left(\frac{\sigma_{ftd}}{217}\right)^{\eta_{\sigma}} \cdot \left(\frac{25}{f_{ck}}\right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20}\right)^{\frac{1}{3}} \cdot \left(\frac{1,5 \cdot \phi}{c_d}\right)^{\frac{1}{2}} \ge \begin{cases} 10 \cdot \phi \\ \frac{\phi}{4} \cdot \frac{\sigma_{ftd}}{f_{bd,100a}} \end{cases}$$


 η_{σ} = 1.0 for $\sigma_{ftd} \le 217$; 1.5 for $\sigma_{ftd} \ge 217$

 $f_{bd,100a} = 1.5$ MPa, unless more accurate information on the product

 k_{cp} = casting effects (main text)

 k_{lb} = persistent o transient design situation (main text)

 $c_d = \min \{0.5 c_s; c_x; c_y\}$

MEMBERS AND PARTICULAR RULES

Annex R gives some specific rules for beams, slabs, walls or deep beams. No specific rules are
provided for columns and foundations.

8. CONCLUSIONS

- FRP embedded reinforcement has been incorporated for the first time in EC2 in the informative Annex R.
- FRP reinforcement has been **already applied in many projects**, where profit can be taken from its behaviour in front of corrosion, electromagnetic fields or cuttability.
- Main differences in design between FRP and steel reinforcement arise from the linear elastic behaviour up to failure, lower modulus of elasticity and the long-term strength of FRP under sustained stresses.
- Due to the lower modulus of elasticity, SLS often govern the design.

ACKNOWLEDGEMENTS

BIA2015-64672-C4-1-R, RTI2018-097314-B-C21, PID2020-119015GB-C22, PID2021-1237010B-C21.

Thank you for your attention

Lluís Torres