

EN 1992

Design of concrete DSLIMERIO GESArgado de www.e-ache.com el 10/12/2025 2nd generation of Eurocode 2 on concrete structures

Madrid, October 17th, 2023

Contents

- Introduction
- Design Basis Safety format
- Material
- Durability
- Ultimate Limit States (ULS)
- Serviceability Limit States (SLS)
- Detailing of Members and Particular Rules
- Lightly Reinforced SFRC Structures
- Conclusions

Disponible en www.hormigonyacero.com

Hormigón y Acero 2023; 74(299-300):169-186 https://doi.org/10.33586/hya.2023.3124

Design of Steel Fibre Reinforced Concrete Structures According to the Annex L of the Eurocode-2 2023

Diseño de estructuras de hormigón reforzado con fibras de acero según el Anejo L del nuevo Eurocódigo-2 2023

de la Fuente, A.a, Monserrat-López, A.*,b, Tošić, N.a, Serna, P.c

^a Department of Civil and Environmental Engineering, UPC-BarcelonaTECH.

^b Department of Civil and Environmental Engineering, UPC-BarcelonaTECH; Postdoctoral Margarita Salas Fellowship funded by UPV.

^c Institute of Concrete Science and Technology ICITECH Universitat Politècnica de València.

Recibido el 20 de febrero de 2023; aceptado el 30 de marzo de 2023

. .

Introduction

- FpEN 1992-1-1:2023 (Annex L) and 1992-1-2:2023 (Annex B)
- Annex L covers steel fibre reinforced concrete (EN 14889-1)
- Informative and each CEN member decides it status

Basis of design – Partial factors for materials

Annex L is fully aligned with the partial factor format of Eurocode 0

- For compression neither f_c nor its CoV are significantly affected by fibers
- For tension Although due to fibre distribution and orientation anisotropy scatter in EN 14651 tests is 10–30%, combined use of $f_{R,k}$, κ_O , κ_G allows meeting target reliability levels

Design situations – Limit states	Y SF
Persistent and transient design situations	1,50
Accidental design situations	1,20
Serviceability limit states	1,00

Basis of design – Partial factors for materials

Specific cases may require partial factor calibration. Some examples include

- Use of FORM for y_{SF} calibration of precast tunnel linings, elements without shear reinforcement
- Calibration of a global resistance factor for non-linear analysis (Annex F) for full-scale flat slabs

Tošić et al. (2021)

$$\gamma_R = e^{(lpha_R\cdoteta\cdot V_R)} \ V_R = rac{1}{1,65} ln \left(rac{q_{Rm}}{q_{Rk}}
ight)$$
 ECOV (Cervenka

ECOV (Cervenka 2013)

Material

General aspects

- Annex L refers to SF meeting the EN 14889-1 as potential replacement of ordinary steel reinforcement
- SF do not significantly modify the f_c , f_{ct} , E_c , ε_{cs} , φ_c (compression)

SF provide residual tensile strength (f_{Ft}) to cracked sections in both SLS and ULS

Stength and ductility classification

Strength Class (SC) based on f_{R.1k} and ductility on f_{R3.k}/SC

EN 14651:2005

Llano-Torre et al. (2022)

Design assumption for the material

- $f_{R.1k}/f_{ctk;0.05} \ge 0.5$ (mínimum material ductility after cracking)
- Service (f_{Etd}) and ultimate (f_{Etud}) residual tensile strength of SFRC to be computed as:

$$f_{Ftsd} = \frac{f_{Fts,ef}}{\gamma_{SF}} = k_o \cdot k_G \cdot 0.37 \cdot \frac{f_{R1k}}{\gamma_{SF}} \qquad f_{Ftud} = \frac{f_{Ftu,ef}}{\gamma_{SF}} = k_o \cdot k_G \cdot 0.33 \cdot \frac{f_{R3k}}{\gamma_{SF}}$$

 k_o : orientation factor ($f_{Ri,element}/f_{R,beam}$). k_o : = 0.5 unless verified by testing (< 1.7); k_o : = 1.0 for consistency classes S2-S5 $k_{\rm G}$: factor to account for the member size (cracked area, $A_{\rm ct}$); $k_{\rm G}$ = 1.0 + 0.5 $A_{\rm ct}$ \leq 1.5

- Its is possible to consider up to 90% of f_{Rm}
- k_G = 1.0 for local mechanisms

Material

Stress-strain relation for structural analysis

In tension

a tri-linear constitutive law for the uniaxial stress-strain

$$\varepsilon_{\rm F,0} = 2 \cdot \varepsilon_{\rm ctm} = 2 \cdot f_{\rm ctm} / E_{\rm cm}$$

$$\varepsilon_{\text{Ftu}} = \frac{w_{\text{u}}}{l_{\text{cs}}} \le 2.5 \frac{\text{mm}}{l_{\text{cs}}} < \varepsilon_{\text{Ftud}} = 0.02$$

structural characteristic length (it can be considered as a double factor considering size effect and synergy of the fibres and rebars contributions)

$$f_{\text{Ft3,ef}} = k_0 \cdot k_G \cdot (0.57 \cdot f_{R,3k} - 0.26 \cdot f_{R,1k})$$

 l_{cs}

Material

Stress-strain relation for structural analysis

In compression

Disponible en www.hormigonyacero.com

Hormigón y Acero 2023; 74(299-300):187-198 https://doi.org/10.33586/hya.2022.3092

Compressive Behaviour of Steel-Fibre Reinforced Concrete in Annex L of New Eurocode 2

Comportamiento en compresión del hormigón reforzado con fibras de acero según el Anejo L del nuevo Eurocódigo 2

Gonzalo Ruiz*, a, Ángel de la Rosaa, Elisa Povedaa, Riccardo Zanonb, Markus Schäferb, & Sébastien Wolfc

^a ETS de Ingenieros de Caminos, C. y P., Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain
^b Department of Engineering, University of Luxembourg, 6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
^c ArcelorMittal Fibres, Route de Finsterthal, L-7769 Bissen, Luxembourg

Recibido el 15 de julio de 2022, aceptado el 8 de diciembre de 2022

Durability – Minimum cover

Annex L approach is valid both for EC2 section 6 (XRC) or Annex P (current EC-2)

- Minimum cover due to durability requirements $c_{min,dur}$ is only valid for embedded reinforcement
- Cover unaffected by fibers, except to prevent fibre accumulation $\Rightarrow c_{min} = 20 \text{ mm}$
- Spalling due to corroded fibres is unlikely small stresses are generated due to small fibre size

SFRC elements considered as equivalent RC elements in terms of durability

 SFRC under XC2–XC4, XD1–XD3, XS1–XS3 designed to be uncracked at SLS

In ULS, disregard tensile strength in a "sacrificial layer" of $c_{\rm f,dur}$ = 10 mm from the exposed surface

2. SFRC under XC2–XC4, XD1–XD3, XS1–XS3 designed to be *cracked* at SLS

In ULS, disregard tensile strength in a "sacrificial layer" of $c_{\rm f,dur} = k_{\rm dur} \cdot c_{\rm min,dur}$ mm from the exposed surface

A reduction of $c_{\rm f,dur}$ is possible due to reduced crack widths in SFRC: $c_{\rm f,dur} = k_{\rm dur} \cdot c_{\rm min,dur} \cdot \frac{w_{\rm k,cal}}{w_{\rm lim,cal}} \le 10 \, \rm mn$

ELU: Bending with or without axial force

Two simplified stress-strain constitutive models: (1) rigid-plastic and (2) bi-linear

- The rigid-plastic has been proven to be reliable on large datasets ($\mu = 1.011$; CoV = 8%)
- The rigid-plastic model should be used for ductility classes a, b, c; for d, e only to determine ULS capacity at ε_{FTud}.

ELU: Shear and Punching

- The presence of SFs enhance the shear strength due to:
 - ✓ control the opening of inclined cracks induced by shear stresses;
 - ✓ allow a **multiple and stable shear crack progression** delaying the formation of the critical shear crack
 - ✓ improve the shear transfer across cracks an the aggregate interlock capacity

Cuenca and Serna (2013).

Increase in shear strength due to the effect of fibres (Cuenca et al. (2018)).

ELU: Shear and Punching

- Annex L approach for Shear
 - concrete contribution based on the formulation of the Critical Shear Crack Theory (CSCT)
 - **effect of fibres** described by an additional strength term f_{Ftud}
 - parameter η_F to express that the effect is not fully additive to the concrete contribution

without stirrups:
$$\tau_{\text{Rd,cF}} = \eta_{\text{cF}} \cdot \tau_{\text{Rd,c}} + \eta_{\text{F}} \cdot f_{\text{Ftud}} \geq \eta_{\text{cF}} \cdot \tau_{\text{Rdc,min}} + \eta_{\text{F}} \cdot f_{\text{Ftud}}$$
 with stirrups:
$$\tau_{\text{Rd,sF}} = \left(\eta_{\text{sw}} \cdot \rho_{\text{w}} \cdot f_{\text{ywd}} + \eta_{\text{F}} \cdot f_{\text{Ftud}}\right) \cdot \cot \theta \geq \rho_{\text{w}} \cdot f_{\text{ywd}} \cdot \cot \theta$$

Annex L for Punching (similar to Shear)

•
$$\eta_{\rm F} = 0.4$$

without stirrups

$$\tau_{\text{Rd,cF}} = \eta_c \cdot \tau_{\text{Rd,c}} + \eta_F \cdot f_{\text{Ftud}} \ge \eta_c \cdot \tau_{\text{Rdc,min}} + f_{\text{Ftud}}$$

with stirrups

$$\tau_{\text{Rd,csF}} = \eta_c \cdot \tau_{\text{Rd,c}} + \eta_s \cdot \rho_w \cdot f_{ywd} + \eta_F \cdot f_{\text{Ftud}} \ge \rho_w \cdot f_{ywd} + \eta_F \cdot f_{\text{Ftud}}$$

Steel fibre reinforced concrete structures

ELU: Torsion

Torsion provisions follow the philosophy adopted for shear:

- Fibres are considered as a smeared reinforcement
- Reduction of the RC contribution (no full addition with the fibre contribution)
- Torsional capacities governed by yielding of either transverse or longitudinal reinforcement

$$\begin{aligned} &\tau_{\mathsf{t},\mathsf{Rd},\mathsf{swF}} = \eta_{\mathsf{sw}} \tau_{\mathsf{t},\mathsf{Rd},\mathsf{sw}} + \eta_{\mathsf{F}} f_{\mathsf{Ftud}} \geq \tau_{\mathsf{t},\mathsf{Rd},\mathsf{sw}} \\ &\tau_{\mathsf{t},\mathsf{Rd},\mathsf{slF}} = \eta_{\mathsf{sl}} \tau_{\mathsf{t},\mathsf{Rd},\mathsf{slF}} + \eta_{\mathsf{F}} f_{\mathsf{Ftud}} \geq \tau_{\mathsf{t},\mathsf{Rd},\mathsf{s}l} \end{aligned}$$

- For combinations of torsion + shear and/or bending, one of the following should be adopted:
 - the fibre contribution is used to resist only torsional effects

the fibre contribution is used to resist only shear and/or bending effects (disregarding the fibre contribution

(a)

to resisting torsional effects)

Amin and Bentz (2017)

Facconi et al. (2019)

ELU: FATIGUE

Contribution of FRC in fatigue resistance disregarded (due to divergences in literature)

Carlesso et al. (2012)

- Tarifa et al., 2015 Rail track slabs
- Domingo et al., 2023 Segmental bridges
- Plizzari et al., 1997 Uniaxial tension
- Saucedo et al., 2013 Uniaxial compression

•

Serviceability Limit States (SLS) – Crack control

Crack control is one of the most well-known and proven benefits of SFRC

• Same approach as for RC – $W_k = k_w \cdot \mathbf{S}_{r.m.cal} \cdot (\boldsymbol{\varepsilon}_{sm} - \boldsymbol{\varepsilon}_{cm})$

Two cases are considered for SFRC

- A multi-crack pattern associated to a presence of conventional reinforcement at a spacing ≤10∅
- A single-crack pattern when the spacing of conventional reinforcement is larger than 10Ø
- In the first case

$$k_{\rm w} = 1.7$$

$$s_{\rm r,m,cal,F} = 1.5 \cdot c + \frac{k_{\rm fl} \cdot k_{\rm b}}{7.2} \cdot \frac{\emptyset}{\rho_{\rm p,eff}} \cdot (1 - \alpha_{\rm f}); \quad \alpha_{\rm f} = \frac{f_{\rm Ft1,ef}}{f_{\rm ctm}} \le 1.0$$

In the second case

$$k_{\rm w} = 1.3$$

$$s_{r,m,cal,F} = h - x$$

Detailing of members and particular rules

Rules for mínimum reinforcement

- In ULS with M_{Ed} and N_{Ed} then $A_{s,min}$ from imposing $M_{R,min}(N_{Ed}) \ge M_{cr}(N_{Ed})$
- In ULS with M_{Ed} = 0 and N_{Ed} (pure tension) then $A_{s,min}$ from imposing $N_{R,min} \ge N_{cr}$
- BEAMS –per ductility require A_s ≥ A_{s,min}

- In ULS of Shear $\rho_{Fw,min} \ge \rho_{w,min} \frac{f_{Ftu,ef}}{f_{yk}} \ge 0$ $M_{R,min}(f_{Ftud}, A_{s,min}) M_{cr} = 0$
- In ULS of Torsion $\rho_{Fw,min} \ge \rho_{w,min} \frac{f_{Ftu,ef}}{f_{yk}} \ge 0.3 \frac{f_{ctm}}{f_{yk}}$
 - Shear and Torsion reinforcement can be replaced in BEAMS if $f_{\text{Ftu,ef}}/f_{\text{yk}} \ge \rho_{\text{Fw,min}}$

Detailing of members and particular rules

Lightly reinforced SFRC structures $(A_s < A_{s,min})$

- May be only applied to statistically indeterminate structures (elastically suported structures, piled slabs, shell-type components, precast containers, segmental linings)
- Linear elastic, plastic and non-linear analysis allowed
- For ULS shear $au_{\mathrm{Rd},cF}=f_{\mathrm{Ftud}}$
- For foundations directly on ground SFRC 1b
- For foundation on piles SFRC 2c
- For tunnel lining segments SFRC 4c (if A_s = 0)

Conclusions

- The first technical european harmonized document realised by the CEN-TC250/SC2 covering the design of FRC structures
- Covers the design of SFRC structures of any failure consequence class
- Is Informative and each CEN member decides its status within the country
- Allows for partial (or even total) replacement of the ordinary steel reinforcement by steel fibres that meet the EN 14889-1
- Next steps: the WG3 within the CEN-TC250/SC2 has started to generate an harmonized guideline for covering the design of non-metallic fibre reinforced concrete structures

Thank you for your attention

