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Stress-strain relation for non-linear structural analysis of
SFRC

The relation between ⇤ and ⇥ shown in Fig. XX may be used to model the response
of SFRC to short term uniaxial compression. It has two distinct stretches. The
first one goes from the axes origin to the maximum stress (curve 1 in Fig. XX)
and is described by the following equation:

⇤⇤ =
� ⇥⇤ � ⇥⇤ 2

1 + (�� 2) ⇥⇤
(1)

where:

⇤⇤ = ⇥
fcf

Non-dimensional stress

fcf Compressive strength of SFRC

� = 1.05 ⇥cf
Ef

fcf
Non-dimensional coe�cient

⇥cf Critical strain, i.e. strain that corresponds to fcf

Ef Elastic modulus of SFRC
⇥⇤ = �

�cf
Non-dimensional strain
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database that supports a few of the expressions of the model, together with a short
explanation of the response-surface methodology and the process followed in order
to obtain the responses.

2. ⇤-� relationship for non-linear structural analysis of SFRC

The relation between ⇤c and �c in compression in Formula 5.6 (EC2, version 2021-
01) may be used to model the response of SFRC to short-term uniaxial compression
provided the following modifications in the parameters are made:

�c1 = 7 · 10�4f 1/3
cm (1 + 0.03fR,1k) (1)

and, for �c1 < �c ⇥ �cu1:

k = 1 +
20�

82� 2.2fR,1k

and �cu1 = k �c1 (2)

Note that fcm and fR,1k must be inserted in MPa in Eqs. 1 and 2.

3. Explanation of the model

Formula 5.6 of EC2, version 2021-01, is:

⇤c

fcm
=

k ⇥ � ⇥2

1 + (k � 2) ⇥
(3)

where:

fcm (Mean comp. strength in Table 5.1)
k = 1.05 �c1Ecm/fcm

�c1 = 7 · 10�4f 1/3
cm ⇥ 2.8 · 10�4

Ecm (Mean elastic modulus)
⇥ = �c/�c1

�c < �c1 = [2.8 + 14 (1� fcm/108)4] · 10�4 ⇥ 3.5 · 10�4

This stress-strain curve for plain concrete is shown in Fig. 1.

The stress-strain relation for SFRC also uses Eq. 3, but modifies the values
of some of the parameters to account for the additional ductility provided by the
fibers. The SFRC model keeps the values for fcm and Ecm since it is proven that
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Fórmulas Gonzalo Ruiz

Mix proportions [kg/m3]

cement ASTM II 42.5 R mc 556.4
water mw 161.4

lime powder mLP 55.6
silica fume mSF 26.7

siliceous sand mFA 890.3
siliceous gravel (dmax = 12 mm) mCA 667.7

nano silica mNS 3.7
Glenium ACE-325/B-255 mSP 11.7

fibers mf 64.5

hooked-end fibers:

⌃f = 50 mm
df =0.75 mm
⇥ =67
mf =64.5 kg/m3 ⇤ ⇧f =0.82%
⌅Y = 1900 MPa

k = 1 + 20⌅
82�2.2fR,1k

�cu1 = k �c1

(d) Evaluation of the cohesive stresses along the cohesive
crack at Pc using any softening function, ⌅(x) = f(w):

a⇥
⇧

L
H

u =

⇤
L

BHE
+

2⇤a2

BH2E

⌅
F du =

4⇤a

BH2E
Fc da F = Fc

�
Fc

BH

⇥2

� ⌥⌃  
⌅2

c

⇤a = GFE

2. SFRC in compression: σ-ε relationship
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The relation between ⇤ and ⇥ shown in Fig. XX may be used to model the response
of SFRC to short term uniaxial compression. It has two distinct stretches. The
first one goes from the axes origin to the maximum stress (curve 1 in Fig. XX)
and is described by the following equation:
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Fórmulas Gonzalo Ruiz

Mix proportions [kg/m3]

cement ASTM II 42.5 R mc 556.4
water mw 161.4

lime powder mLP 55.6
silica fume mSF 26.7

siliceous sand mFA 890.3
siliceous gravel (dmax = 12 mm) mCA 667.7

nano silica mNS 3.7
Glenium ACE-325/B-255 mSP 11.7

fibers mf 64.5

hooked-end fibers:

⌃f = 50 mm
df =0.75 mm
⇥ =67
mf =64.5 kg/m3 ⇤ ⇧f =0.82%
⌅Y = 1900 MPa

k = 1 + 20⌅
82�2.2fR,1k

�cu1 = k �c1

(d) Evaluation of the cohesive stresses along the cohesive
crack at Pc using any softening function, ⌅(x) = f(w):

a⇥
⇧

L
H

u =

⇤
L

BHE
+

2⇤a2

BH2E

⌅
F du =

4⇤a

BH2E
Fc da F = Fc

�
Fc

BH

⇥2

� ⌥⌃  
⌅2

c

⇤a = GFE

2. SFRC in compression: σ-ε relationship

Documento descargado de www.e-ache.com el 09/02/2026



Report for TG2

Model for the compressive stress-strain relation

of steel-fiber reinforced concrete for non-linear

structural analysis

Gonzalo Ruiz & Ángel de la Rosa
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2.2 Stress distribution for SFRC in compression in ULS

Annex L also allows accounting for the superior toughness and ductility of SFRC
in ULS —as compared to plain concrete— by enlarging the strain parameters that
define the stress distribution. This is done in section L.8.1 (4), which reads as
follows:

“The stress distribution according to Formula (8.4) may be modified
for SFRC by applying �c2 = 0.0025 and �cu = 0.006.”

These parameters are 0.0020 and 0.0035, respectively, for concrete without fibres.

3 Explanation and justification of the compres-
sive stress-strain model for SFRC in Annex L

3.1 Stress-strain relationship in compression

The new ⇤c-�c relationship for SFRC is built on the compressive model for plain
concrete proposed by Sargin [92] and implemented in EC2 [73], Formula 5.6, that
is:

⇤c

fcm
=

k ⇥ � ⇥2

1 + (k � 2) ⇥
(3)

where fcm is the mean compressive strength (given in Table 5.1 of EC2 [73]); k is
a parameter enforcing that the secant elastic modulus of the curve is Ecm, and is
given by:

k = 1.05 �c1
Ecm

fcm
(4)

where �c1 is the compressive strain corresponding to the concrete strength, i.e. the
peak of the curve, and is obtained as:

�c1[h] = 0.7f 1/3
cm ⇥ 2.8h (5)

Equation 5 needs that fcm is in MPa. Note that k in Eq. 4 is non-dimensional
whatever the system of units is used, but it would need that Ecm is in GPa and
fcm in MPa in case �c1 is given in per mill as per Eq. 5.

Variable ⇥ of Eq. 3 is the ratio between the compressive strain, �c, and the
compressive strain at the peak, �c1:

⇥ =
�c
�c1

(6)

where �c has the following limit value:

�c < �cu1[h] = 2.8 + 14 (1� fcm/108)
4 ⇥ 3.5h (7)
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2.2 Stress distribution for SFRC in compression in ULS

Annex L also allows accounting for the superior toughness and ductility of SFRC
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2.2 Stress distribution for SFRC in compression in ULS

Annex L also allows accounting for the superior toughness and ductility of SFRC
in ULS —as compared to plain concrete— by enlarging the strain parameters that
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2.2 Stress distribution for SFRC in compression in ULS

Annex L also allows accounting for the superior toughness and ductility of SFRC
in ULS —as compared to plain concrete— by enlarging the strain parameters that
define the stress distribution. This is done in section L.8.1 (4), which reads as
follows:

“The stress distribution according to Formula (8.4) may be modified
for SFRC by applying �c2 = 0.0025 and �cu = 0.006.”

These parameters are 0.0020 and 0.0035, respectively, for concrete without fibres.

3 Explanation and justification of the compres-
sive stress-strain model for SFRC in Annex L

3.1 Stress-strain relationship in compression

The new ⇤c-�c relationship for SFRC is built on the compressive model for plain
concrete proposed by Sargin [92] and implemented in EC2 [73], Formula 5.6, that
is:
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where fcm is the mean compressive strength (given in Table 5.1 of EC2 [73]); k is
a parameter enforcing that the secant elastic modulus of the curve is Ecm, and is
given by:

k = 1.05 �c1
Ecm
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(4)

where �c1 is the compressive strain corresponding to the concrete strength, i.e. the
peak of the curve, and is obtained as:

�c1[h] = 0.7f 1/3
cm ⇥ 2.8h (5)

Equation 5 needs that fcm is in MPa. Note that k in Eq. 4 is non-dimensional
whatever the system of units is used, but it would need that Ecm is in GPa and
fcm in MPa in case �c1 is given in per mill as per Eq. 5.

Variable ⇥ of Eq. 3 is the ratio between the compressive strain, �c, and the
compressive strain at the peak, �c1:
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in ULS —as compared to plain concrete— by enlarging the strain parameters that
define the stress distribution. This is done in section L.8.1 (4), which reads as
follows:
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5. Conclusions

• Annex L of new EC2 accounts for the additional ductility 
due to fibers

• Compressive and flexural classes for SFRC are coupled

• The ultimate compressive strain in ULS goes up to 0.6%

• These new criteria are advantageous for composite 
structures
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A B S T R AC T

This paper describes the model for the compressive stress-strain behaviour of steel-!bre reinforced concrete (SFRC) in Annex L of the 
new Eurocode 2 (CEN, Eurocode 2: Design of concrete structures. Part 1-1: General rules – Rules for buildings, bridges and civil struc-
tures, prEN 1992-1-1: 2022; EC2 in short), developed within CEN TC250/SC2/WG1/TG2 – Fiber reinforced concrete. The model 
uses functions obtained from correlations with an extensive database comprised of 197 welldocumented SFRC compressive tests and 
484 "exural tests. We detailedly explain the model and derive the strain values for the parabola-rectangle model for ULS of SFRC in 
Annex L. In addition, we also use the model and the correlations with the database to provide a link between the compressive and the 
"exural performance classes in EC2, which allows a complete de!nition of any particular SFRC. Likewise, we derive parabola-rectangle 
strain values for each "exural performance class, which is mainly advantageous for the stronger "exural performance classes. Finally, we 
give an example showing the enhancement in strength and ductility of a composite steel-SFRC section endorsed with the new model, 
which results of 15% and 100%, respectively. 
KEYWORDS: Compressive model for SFRC in Annex L of Eurocode 2, combined compression/"exural classi!cation for any SFRC, relevant strains 
for ULS calculation, impact of the ductility and toughness enhancement of composite steel-SFRC sections on Eurocode 4. 

©2023 Hormigón y Acero, the journal of the Spanish Association of Structural Engineering (ACHE). Published by Cinter Divulgación Técnica S.L. 
This is an open-access article distributed under the terms of the Creative Commons (CC BY-NC-ND 4.0) License.

R E S U M E N

Este artículo describe la nueva ley tensión-deformación en compresión para hormigón reforzado con !bras de acero (HRFA) que 
propone el Anejo L del nuevo Eurocódigo 2 (CEN, Eurocódigo 2: Diseño de estructuras de hormigón. Parte 1-1: Reglas generales – Re-
glas para edi!cios, puentes y estructuras civiles, prEN 1992-1-1: 2022; en breve, EC2), desarrollado dentro del grupo de trabajo CEN 
TC250/SC2/WG1/TG2 – Hormigón reforzado con !bras. La nueva ley utiliza funciones obtenidas a través de correlaciones con una 
extensa base de datos compuesta por ensayos de HRFA bien documentados, 197 a compresión y 484 a "exión. En el artículo explicamos 
detalladamente la nueva ley, y deducimos los nuevos valores de deformación para la ley parábola-rectánculo en ELU para HRFA en el 
Anejo L. Además, también usamos la nueva ley y las correlaciones con la base de datos para vincular las clases de compresión y "exión 
del EC2, lo cual permite una de!nición completa de cualquier HRFA. Del mismo modo, deducimos nuevos valores de deformación para 
la ley parábola-rectánculo en ELU para cada clase de "exión, que añaden ductilidad a las clases de "exión más resistentes. Finalmente, 
incluimos un ejemplo que muestra la mejora en resistencia y ductilidad de una sección mixta de acero-HRFA calculada con la nueva 
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Steel-fi bre reinforced concrete in composite structures 
as a mean to increase resistance and ductility
Outlook in a new generation of composite structures
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Riccardo Zanon, Markus Schäfer, Gonzalo Ruiz, Ángel De La Rosa, Qingjie Zhang

1 Introduction

1.1 Current challenges in composite construction

Composite construction in steel and concrete represents 
a very effi  cient structural solution because the materials 
are used according to their best properties. Concrete has 
good compressive strength and is easy to form into any 
shape, making it particularly suitable for fl at structures 
such as slabs. Structural steel has both high compressive 
and tensile strength together with high ductility. For con-
ventional composite sections with a double symmetrical 
steel section and a concrete fl ange with a large eff ective 
width arranged above the steel top fl ange, usually fully 
plastic resistance is reached when the cross-section is 
classifi ed into cross-section Classes 1 or 2. This classifi ca-

tion avoids too slender cross-sections and prevents the 
risk of local buckling so that the cross-sections meet the 
requirements for high rotational capacity.

The rotation capacity of a structural system depends on 
the plastic deformation capacity of the highly stressed 
areas. For a hyperstatic system, the deformation capacity 
aff ects the distribution of the internal forces along the 
structural system line. The higher the rotation capacity, 
the larger the possibility to redistribute the bending mo-
ments from the higher to the lower stress points. Howev-
er, the rotation capacity is also important for the cross-
section resistance. Suffi  cient rotation capacity allows the 
reaching of yield strains for the structural steel and rein-
forcement resulting in the development of plastic mo-
ment resistance. The demand for economic optimization 

Steel-fi bre reinforced concrete is a well-known material used 
for decades for industrial fl oorings, shotcrete, or other specifi c 
applications. Its use is now spreading in structural applications 
as a complement or a substitute for conventional bar-rein-
forced concrete since the normative framework is ready to 
provide design approaches for several concrete applications. 
Nevertheless, some adaptations are needed for implementing 
steel-fi bre reinforced concrete in the design approach for 
steel-concrete composite structures whereby complementary 
aspects need to be considered. In this fi eld, besides the in-
crease of tensile properties and durability of the concrete 
member, a very important contribution may be given by the in-
crease of the concrete ductility in compression. This property 
is conferred by the steel fi bres which provide a confi nement ef-
fect increasing the plastic damage that the concrete matrix 
can absorb. If this property is widely accepted, its benefi ts are 
limited for the design of conventional concrete sections. Con-
versely, for composite sections, the possibility to reach higher 
strains in compression means ensuring full exploitation of the 
strength capacity of structural steel. Besides reaching an opti-
misation of already in-use cross-sections, this new material 
combination enhances the use of higher structural steel 
strengths in composite structures.

Keywords composite beams; steel-fi bre reinforced concrete (SFRC); strain-
limited resistance

Steigerung der Tragfähigkeit und Duktilität für Verbundkon-
struktionen aus Stahl und Beton durch Anwendung von Stahl-
faserbeton – eine neue Generation von Verbundtragwerken
Stahlfaserbeton ist ein bekanntes Baumaterial, welches seit 
Jahrzehnten für Industrieböden, Spritzbeton oder andere spezi-
fi sche Anwendungen zum Einsatz kommt. Seine Verwendung 
verbreitet sich mehr und mehr als Ergänzung oder Ersatz für 
den konventionell stabbewehrten Beton. Das zukünftige euro-
päische normative Regelwerk im Massivbau wird dem Trag-
werksplaner Berechnungsmethoden bereitstellen, um die 
Grenzen in der Bemessung weiter auszudehnen und neue An-
wendungen zu ermöglichen. Für den Einsatz im Bereich der 
Verbundtragwerke aus Stahl und Beton leistet der stahlfaser-
bewehrte Beton einen wichtigen Beitrag zur Erhöhung der Zug-
festigkeit und Dauerhaftigkeit. Darüber hinaus werden aber 
auch signifi kante Auswirkungen bezogen auf die Duktilität des 
Betons im überdrückten Bereich im Vergleich zum Normalbe-
ton festgestellt. Durch die Stahlfasern werden Umschnürungs-
effekte im Beton erzielt und das plastische Niveau in der Span-
nungs-Dehnungslinie des Werkstoffs einhergehend mit einer 
deutlichen Steigerung der Grenzdehnungen ausgedehnt. Dies 
unterstreicht einen wesentlichen Vorteil des Einsatzes von 
Stahlfaserbeton. Gemäß dem Entwurf der neuen Normengene-
ration prEN1992-1-1 wird es möglich sein, diese spezifi schen 
Eigenschaften planmäßig in der Bemessung zu erfassen. Da-
durch lassen sich neue Möglichkeiten für den Verbundbau ab-
leiten, für den die Duktilität der Werkstoffe grundsätzlich, aber 
besonders für den Einsatz hochfester Baustähle, von großer 
Bedeutung ist.

Stichworte Verbundträger; Stahlfaserbeton; dehnungsbezogene 
Momenttragfähigkeit
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