

Compressive behavior of SFRC in new EC2, Annex L

Gonzalo Ruiz

Ángel De La Rosa, Elisa Poveda,
Riccardo Zanon, Markus Schäfer, Sébastien Wolf

Universidad de Castilla-La Mancha | Université du Luxembourg

2nd Generation EC2 – Madrid, October 17th 2023

1. Introduction
2. SFRC in compression
3. Application example
4. Conclusions

1. Introduction

2. SFRC in compression: σ - ϵ relationship

2. SFRC in compression: σ - ϵ relationship

2. SFRC in compression: σ - ϵ relationship

2. SFRC in compression: σ - ϵ relationship

2. SFRC in compression: ULS

These parameters are 0.0020 and 0.0035, respectively, for concrete without fibres.

2. SFRC in compression: ULS

These parameters are 0.0020 and 0.0035, respectively, for concrete without fibres.

2. SFRC in compression: ULS

These parameters are 0.0020 and 0.0035, respectively, for concrete without fibres.

2. SFRC in compression: ULS

These parameters are 0.0020 and 0.0035, respectively, for concrete without fibres.

“The stress distribution according to Formula (8.4) may be modified for SFRC by applying $\epsilon_{c2} = 0.0025$ and $\epsilon_{cu} = 0.006$.”

2. SFRC in compression: ULS

These parameters are 0.0020 and 0.0035, respectively, for concrete without fibres.

“The stress distribution according to Formula (8.4) may be modified for SFRC by applying $\epsilon_{c2} = 0.0025$ and $\epsilon_{cu} = 0.006$.”

4. Application example: Composite beam

4. Application example: Composite beam

4. Application example: Composite beam

5. Conclusions

- Annex L of new EC2 accounts for the additional ductility due to fibers

5. Conclusions

- Annex L of new EC2 accounts for the additional ductility due to fibers
- Compressive and flexural classes for SFRC are coupled

5. Conclusions

- Annex L of new EC2 accounts for the additional ductility due to fibers
- Compressive and flexural classes for SFRC are coupled
- The ultimate compressive strain in ULS goes up to 0.6%

5. Conclusions

- Annex L of new EC2 accounts for the additional ductility due to fibers
- Compressive and flexural classes for SFRC are coupled
- The ultimate compressive strain in ULS goes up to 0.6%
- These new criteria are advantageous for composite structures

Disponible en www.hormigonyacero.com
Hormigón y Acero 2023; 74(299-300):187-198
<https://doi.org/10.33586/hya.2022.3092>

Compressive Behaviour of Steel-Fibre Reinforced Concrete in Annex L of New Eurocode 2

*Comportamiento en compresión del hormigón reforzado con fibras de acero
según el Anejo L del nuevo Eurocódigo 2*

Gonzalo Ruiz^{*, a}, Ángel de la Rosa^a, Elisa Poveda^a, Riccardo Zanon^b,
Markus Schäfer^b, & Sébastien Wolf^c

^aETS de Ingenieros de Caminos, C. y P., Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071 Ciudad Real, Spain

^bDepartment of Engineering, University of Luxembourg, 6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

^cArcelorMittal Fibres, Route de Finsterthal, L-7769 Bissen, Luxembourg

References

DOI: 10.1002/stab.202200070

Riccardo Zanon, Markus Schäfer, Gonzalo Ruiz, Ángel De La Rosa, Qingjie Zhang

ARTICLE

Steel-fibre reinforced concrete in composite structures as a mean to increase resistance and ductility

Outlook in a new generation of composite structures

In honor of the jubilarian Prof. Dr.-Ing. Wolfgang Kurz

Steel-fibre reinforced concrete is a well-known material used for decades for industrial floorings, shotcrete, or other specific applications. Its use is now spreading in structural applications as a complement or a substitute for conventional bar-reinforced concrete since the normative framework is ready to provide design approaches for several concrete applications.

Steigerung der Tragfähigkeit und Duktilität für Verbundkonstruktionen aus Stahl und Beton durch Anwendung von Stahlfaserbeton – eine neue Generation von Verbundtragwerken
Stahlfaserbeton ist ein bekanntes Baumaterial, welches seit Jahrzehnten für Industrieböden, Spritzbeton oder andere spezifische Anwendungen zum Einsatz kommt. Seine Verwendung

Zanon, R.; Schäfer, M.; Ruiz, G.; De La Rosa, Á.; Zhang, Q. (2022)
Steel-fibre reinforced concrete in composite structures as a mean to increase resistance and ductility – Outlook in a new generation of composite structures. Stahlbau 91, H. 12, S. 801–811.
<https://doi.org/10.1002/stab.202200070>

Compressive behavior of SFRC in new EC2, Annex L

Thanks for your attention

2nd Generation EC2 – Madrid, October 17th 2023